Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
DX
Xem chi tiết
NT
28 tháng 3 2021 lúc 11:47

a) Vế trái  \(=\dfrac{1.3.5...39}{21.22.23...40}=\dfrac{1.3.5.7...21.23...39}{21.22.23....40}=\dfrac{1.3.5.7...19}{22.24.26...40}\)

               \(=\dfrac{1.3.5.7....19}{2.11.2.12.2.13.2.14.2.15.2.16.2.17.2.18.2.19.2.20}\\ =\dfrac{1.3.5.7.9.....19}{\left(1.3.5.7.9...19\right).2^{20}}=\dfrac{1}{2^{20}}\left(đpcm\right)\)

b) Vế trái

 \(=\dfrac{1.3.5...\left(2n-1\right)}{\left(n+1\right).\left(n+2\right).\left(n+3\right)...2n}\\ =\dfrac{1.2.3.4.5.6...\left(2n-1\right).2n}{2.4.6...2n.\left(n+1\right)\left(n+2\right)...2n}\\ =\dfrac{1.2.3.4...\left(2n-1\right).2n}{2^n.1.2.3.4...n.\left(n+1\right)\left(n+2\right)...2n}\\ =\dfrac{1}{2^n}.\\ \left(đpcm\right)\)

              

Bình luận (0)
ND
Xem chi tiết
DA
26 tháng 1 2021 lúc 21:17

1+2+3+4+5+6+7+8+9=133456 hi hi

Bình luận (0)
 Khách vãng lai đã xóa
PH
7 tháng 11 2021 lúc 21:41

đào xuân anh sao mày gi sai hả

Bình luận (0)
 Khách vãng lai đã xóa
DC
26 tháng 11 2021 lúc 19:30

???????????????????
 

Bình luận (0)
 Khách vãng lai đã xóa
UN
Xem chi tiết
TN
15 tháng 1 2017 lúc 20:34
Ta có: 1.3.5...(2n - 1) = { [1.3.5....(2n - 1)].(2.4.6...2n) }/(2.4.6...2n) = (1.2.3.4....2n)/[ (1.2).(2.2).(3.2)...(n.2) ] = {(1.2.3.4...n).[ (n + 1)(n + 2)...2n ] }/[ (1.2.3..n)(2.2.2...2) ] = [ (n + 1)(n + 2)...2n ]/(2.2.2...2) => 1.3.5...(2n - 1) = [ (n + 1)(n + 2)...2n ]/(2.2.2...2) Do n ∈ Z+ => 1.3.5...(2n - 1) thuộc nguyên dương => [ (n + 1)(n + 2)...2n ]/(2.2.2...2) thuộc nguyên dương => [ (n + 1)(n + 2)...2n ] chia hết cho (2.2.2...2) Bây giờ ta cần tìm số chữ số 2 trong cụm (2.2.2....2) Ta thấy: 2 -> 2n có (2n - 2)/2 + 1 = n chữ số => trong cụm (2.2.2...2) có n chữ số 2 (Vì trong mỗi số từ 2 -> 2n ta đều lấy ra 1 số 2) => [ (n + 1)(n + 2)...2n ] chia hết cho 2^n 
Bình luận (0)
DA
15 tháng 1 2017 lúc 20:30

Ta có: 1.3.5...(2n - 1) 
= { [1.3.5....(2n - 1)].(2.4.6...2n) }/(2.4.6...2n) 
= (1.2.3.4....2n)/[ (1.2).(2.2).(3.2)...(n.2) ] 
= {(1.2.3.4...n).[ (n + 1)(n + 2)...2n ] }/[ (1.2.3..n)(2.2.2...2) ] 
= [ (n + 1)(n + 2)...2n ]/(2.2.2...2) 
=> 1.3.5...(2n - 1) = [ (n + 1)(n + 2)...2n ]/(2.2.2...2) 
Do n ∈ Z+ => 1.3.5...(2n - 1) thuộc nguyên dương 
=> [ (n + 1)(n + 2)...2n ]/(2.2.2...2) thuộc nguyên dương 
=> [ (n + 1)(n + 2)...2n ] chia hết cho (2.2.2...2) 
Bây giờ ta cần tìm số chữ số 2 trong cụm (2.2.2....2) 
Ta thấy: 2 -> 2n có (2n - 2)/2 + 1 = n chữ số => trong cụm (2.2.2...2) có n chữ số 2 (Vì trong mỗi số từ 2 -> 2n ta đều lấy ra 1 số 2) 
=> [ (n + 1)(n + 2)...2n ] chia hết cho 2^n 

Bình luận (0)
DP
Xem chi tiết
GD
23 tháng 3 2023 lúc 21:24

1/20 .21 + 1/22 .23 + .... + 1/79 .80

= 1/20 - 1/21  + 1/22 - 1/23 + .......... + 1/79 - 1/80

= 1/20 - 1/80

= 3/80

Ta thấy : 3/80 < 1 

=> 1/20 . 21 + 1/22 . 23 + ........ + 1/79 . 80 <1 (ĐPCM)

Bình luận (0)
H24
Xem chi tiết
TV
Xem chi tiết
VD
16 tháng 11 2023 lúc 22:30

EZ NUB BRO CRY :>

Giả sử : A=(2n+3)2-(2n-1)2

=(4n2+12n+9)-(4n2-4n+1)

=(4n2-4n2)+(12n+4n)+(9-1)

=16n+8

=8(2n+1)   ⋮ 8

Vậy A⋮8 (đpcm)

học lại hàng đẳng thức đáng nhớ đi bro :>

 

 

Bình luận (0)
DX
Xem chi tiết
AH
23 tháng 5 2021 lúc 20:57

Lời giải:

\(M=\frac{1.2.3.4.5.6.7...(2n-1)}{2.4.6...(2n-2).(n+1)(n+2)....2n}=\frac{(2n-1)!}{2.1.2.2.2.3...2(n-1).(n+1).(n+2)...2n}\)

\(=\frac{(2n-1)!}{2^{n-1}.1.2...(n-1).(n+1).(n+2)....2n}=\frac{(2n-1)!}{2^{n-1}.1.2...(n-1).n(n+1)..(2n-1).2}\)

\(=\frac{(2n-1)!}{2^{n-1}.(2n-1)!.2}=\frac{1}{2^{n-1}.2}<\frac{1}{2^{n-1}}\)

Ta có đpcm.

Bình luận (0)
PB
Xem chi tiết
CT
13 tháng 11 2019 lúc 14:59

Đáp án B

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 3 2017 lúc 5:20

Bình luận (0)
NL
Xem chi tiết