Những câu hỏi liên quan
TP
Xem chi tiết
LN
Xem chi tiết
NT
29 tháng 8 2023 lúc 9:10

a: TH1: p=3

=>p+14=17 và 4p+7=4*3+7=12+7=19(nhận)

TH2: p=3k+1

=>p+14=3k+15=3(k+5)

=>Loại

TH3: p=3k+2

4p+7=4(3k+2)+7=12k+8+7

=12k+15

=3(4k+5) chia hết cho 3

=>Loại

b: TH1: p=5

=>p+6=11; p+12=17; p+8=13; p+24=29

=>NHận

TH2: p=5k+1

=>p+24=5k+25=5(k+5)

=>Loại

TH3: p=5k+2

p+8=5k+10=5(k+2) chia hết cho 5

=>Loại

TH4: p=5k+3

p+12=5k+15=5(k+3)

=>loại
TH5: p=5k+4

=>p+6=5k+10=5(k+2)

=>Loại

Bình luận (0)
MC
Xem chi tiết
OO
7 tháng 3 2020 lúc 21:41

a, Th1 : P = 2 => P + 10 = 12 chia hết cho 2 => P là hợp số < Loại >

Th2 : P > 2 => P sẽ có dạng là : 3k ; 3k +1 ; 3k + 2 ( k thuộc N*)

+, Với P = 3k => P = 3 ( P là SNT ) => P + 10 = 13 ; P + 14 = 17 , là SNT < TM >

+ Với P = 3k + 1 => P + 14 = 3k + 1 + 14 = 3k + 15 = 3(k+5) chia hết cho 3 => là hợp số < Loại >

+ Với P = 3k +2 => P + 10 = 3k + 2 + 10 = 3k + 12 = 3(k+4) chia hết cho 3 => là hợp số < Loại >

Vậy P = 3

b, Tương tự 

Bình luận (0)
 Khách vãng lai đã xóa
MC
Xem chi tiết
.
8 tháng 3 2020 lúc 9:42

a) Với p=2 => p+10=12 không là số nguyên tố (loại)

Với p=3 => p+10=13 và p+14=17 là các số nguyên tố  (thỏa mãn)

p là số nguyên tố lớn hơn hoặc bằng 3

=> p có dạng 3k+1 ; 3k+2  ( k thuộc N*)

Với p=3k+1 => p+14=3k+15 chia hết cho 3  (loại)

Với p=3k+2 => p+10=3k+12 chia hết cho 3  (loại)

Vậy p=3.

Bình luận (0)
 Khách vãng lai đã xóa
DA
8 tháng 3 2020 lúc 9:48

a) Nếu p =2 thì p+10= 12; p+14= 16 ( loại)

Vì p là số nguyên tố nên p có dạng 3k; 3k+1; 3k+2

Nếu p =3k thì p = 3 ( vì p là số nguyên tố) khi đó: p+10 = 13; p+14=17 

Nếu p=3k+2 thì p+10= 3k+2+10=  3k+12= 3( k+4) ( vì 3 chia hết cho 3 nên 3(k+4) chia hết cho 3=> p+10 là hợp số trái với đề bài)

Nếu p= 3k+1 thì = 3k+1+14= 3k+15= 3(k+5) (vì...................................................................................................................)

Vậy.......

Chỗ vì thì bn vì như dòng trên nha, còn phần b làm tương tự 

Bình luận (0)
 Khách vãng lai đã xóa
TL
8 tháng 3 2020 lúc 9:54

a)

Với p=2 => p+10=2+10=12 là hợp số=> loại

Với p=3 => p+10=3+10=13 là số nguyên tố;  p+14=3+14=17 là số nguyên tố (chọn)

Nếu p là số nguyên tố >3 => p có dạng 3k+1 hoặc 3k+2 (k thuộc N*)
Với p=3k+1 => p+14=3k+1+14=3k+15 chia hết cho 3 là hợp số (loại)

Với p=3k+2 => p+10 =3k+2+10=3k+12 chia hết cho 3 và 4 là hợp số (loại)

Vậy p=3 thì p+10 và p+14 là số nguyên tố

b) Với p=2 => p+6=2+6=8 là hợp số (loại)

Với p=3 => p+12=3+12=15 là hợp số (loại)
Nếu p là snt >3 thì p có dạng 3k+1 và 3k+2

Với p=3k+1 thì p+8=3k+1+8=3k+9 là hợp số (loại)

Với p=3k+2 thì p+16=3k+2+16=3k+18 là hợp số (loại)

Vậy không có giá trị p nguyên tố để p+6;p+8;p+12;p+16 là snt

Bình luận (0)
 Khách vãng lai đã xóa
TS
Xem chi tiết
DV
29 tháng 6 2015 lúc 10:38

a) Vì k là số tự nhiên nên :

- Nếu k = 0 thì 7 . k = 0, không phải số nguyên tố.

- Nếu k = 1 thì 7 . k = 7, là số nguyên tố.

- Nếu k \(\ge\) 2 thì 7 . k \(\in\) B(7), không phải số nguyên tố.

                Vậy k = 1 thỏa mãn đề bài.

Bình luận (0)
PT
29 tháng 6 2015 lúc 10:51

a) Điều kiện: k>0

  Số nguyên tố là số có hai ước tự nhiên 1 và chính nó.

  7k có các ước:  1,k và 7 (vẫn còn nếu k là hợp số)

 Buộc k phải bằng 1 để thõa mãn yêu cầu đề bài

b) Từ đề trên thì chắc chắn a không là số chẵn.

 Nếu k có dạng 3q thì:

           + k+6 chia hết cho 3 (loại)

   Nếu k có dạng 3q+1 thì 

          + k+14 = 3q + 15 chia hết cho 3 (loại)

 Nếu k có dạng 3q+2 (>5)thì:

   + Nếu q chẵn thì 3q +2 chia hết cho 2 => k chia hết cho 2(loại)

   + Nếu q là 1 hợp số q có thể chia hết cho 3,5,7,9 (1)

Như vậy thì một trong các số trên đề sẽ là hợp số

  Vậy q là 1 số nguyên tố khác 3,5,7 (do 1) và q cũng có thể bằng 1

 => k=3q+2 (với q bằng 1 và q là các số nguyên tố khác 3,5,7)

Bình luận (0)
NT
Xem chi tiết
TB
24 tháng 11 2016 lúc 20:24
Nếu a có dạng 5k+1 ( \(k\in\)N*) thì:

14+a=14+5k+1=15+5k chia hết cho 5 và 15k+5>5 nên 14+a là hợp số (không thỏa đề)

Nếu a có dạng 5k+2 (\(k\in\)N*) thì

 8+a=5k+2+8=5k+10 chia hết cho 5 và 5k+10>5 nên 8+a là hợp số (không thỏa đề)

Nếu a có dạng 5k+3 ( \(k\in\)N*) thì

12+a=12+5k+3=15+5k chia hết cho 5 và 15+5k>5 nên 12+a là hợp số (không thỏa đề)

Nếu a có dạng 5k+4 (\(k\in\)N*) thì

6+a=5k+4+6=10+5k chia hết cho 5 và 10+5k>5 nên 6+a là hợp số (không thỏa đề)

Nếu a có dạng 5k (\(k\in\)N*) thì k=1

Ta có: 6+5=11(nhận)

          8+5=13(nhận)

        12+5=17(nhận)        

        14+5=19(nhận) 

Vậy a=5

Bình luận (0)
TA
Xem chi tiết
LM
Xem chi tiết
H24
Xem chi tiết
DV
27 tháng 6 2017 lúc 10:05

bây giờ mới lên lớp 6 mà tự nhiên cho bài lớp 7

Bình luận (0)
TL
7 tháng 11 2018 lúc 23:05

DỄ MÀ!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Bình luận (0)
VT
28 tháng 10 2021 lúc 16:58

hả, sao

Bình luận (0)
 Khách vãng lai đã xóa