Những câu hỏi liên quan
LH
Xem chi tiết
NV
Xem chi tiết
NT
31 tháng 8 2021 lúc 19:48

a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\Rightarrow x=27;y=36;z=60\)

b, \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)

\(\Rightarrow x=18;y=24;z=30\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
31 tháng 8 2021 lúc 19:59

c, \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}=\frac{2x+3y-z-2-6+4}{4+9-4}=\frac{46}{9}\)

\(\Rightarrow x=\frac{101}{9};y=\frac{52}{3};z=\frac{220}{9}\)

d, Đặt \(x=2k;y=3k;z=5k\Rightarrow xyz=810\Rightarrow30k^3=810\)

\(\Leftrightarrow k^3=27\Leftrightarrow k=3\)Với k = 3 thì \(x=6;y=9;z=15\)

Bình luận (0)
 Khách vãng lai đã xóa
NY
Xem chi tiết
PA
Xem chi tiết
AH
9 tháng 1 2017 lúc 22:53

Lời giải:

Với $M\in (d)$ ta đặt tọa độ của \(M(3t+2,-2t,2t+4)\)

Khi đó \(MA=\sqrt{(3t+1)^2+(-2t-2)^2+(2t+5)^2}\); \(MB=\sqrt{(3t-5)^2+(-2t+2)^2+(2t+1)^2}\)

\(\Rightarrow f(t)=MA+MB=\sqrt{17t^2+34t+30}+\sqrt{17t^2-34t+30}\)

\(f(t)=\sqrt{(\sqrt{17}t+\sqrt{17})^2+13}+\sqrt{(\sqrt{17}t-\sqrt{17})^2+13}\)

Xét \(\overrightarrow{u}=(\sqrt{17}t+\sqrt{17},\sqrt{13});\overrightarrow{v}=(-\sqrt{17}t+\sqrt{17},\sqrt{13})\)

Ta biết rằng \(|\overrightarrow{u}|+|\overrightarrow{v}|\geq |\overrightarrow{u}+\overrightarrow{v}|\) nên \(f(t)\geq \sqrt{(2\sqrt{17})^2+(2\sqrt{13})^2}=2\sqrt{30}\)

Dấu $=$ xảy ra khi \(\overrightarrow{u},\overrightarrow{v}\) cùng hướng hay \(\frac{\sqrt{17}t+\sqrt{17}}{-\sqrt{17}t+\sqrt{17}}=\frac{\sqrt{13}}{\sqrt{13}}>0\Rightarrow t=0\)

\(\Rightarrow M=(2,0,4)\)

Bình luận (0)
CT
Xem chi tiết
LL
15 tháng 6 2017 lúc 21:40

\(x,y,z\ge1\)nên ta có bổ đề: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)

ÁP dụng: \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}+\frac{1}{1+\sqrt[3]{xyz}}\ge\frac{2}{1+\sqrt{xy}}+\frac{2}{1+\sqrt{\sqrt[3]{xyz^4}}}\)

\(\ge\frac{4}{1+\sqrt[4]{\sqrt[3]{x^4y^4z^4}}}=\frac{4}{1+\sqrt[3]{xyz}}\)

\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\)

Dấu = xảy ra \(x=y=z\)hoặc x=y,xz=1 và các hoán vị 

Bình luận (0)
TN
15 tháng 6 2017 lúc 21:42

trc giờ mấy bài này tui toàn quy đồng thôi, may có cách này =))

Bình luận (0)
LL
15 tháng 6 2017 lúc 21:46

vì \(x,y,z\in\left[0;1\right]\)nên \(x^2\ge x^3;y^2\ge y^3;z^2\ge z^3\)

\(VT\le\frac{1}{1+x^3}+\frac{1}{1+y^3}+\frac{1}{1+z^3}\le\frac{3}{1+xyz}\)đúng theo BĐT câu a vì \(x,y,z\le1\)nên BĐT đổi chiều 

Dấu = xảy ra:(x,y,z)=(0;0;0);(1;1;1) ;(1;0;1);(0;1;1);(1;1;0)

Bình luận (0)
H24
Xem chi tiết
HN
1 tháng 10 2016 lúc 18:58

a/ \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\) ; Suy ra \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\) hay \(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)

Suy ra : x = 2.6 = 12

y = 2.4 = 8

z = 2.5 = 10

b,c,d tương tự

e/ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) ; \(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)

Tới đây bạn làm tương tự a,b,c,d

f tương tự.

g/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Leftrightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)

Bạn áp dụng dãy tỉ số bằng nhau là ra.

h/ Áp dụng dãy tỉ số bằng nhau : 

\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)

Từ đó lại suy ra \(\begin{cases}12x=15y\\20z=12x\\15y=20z\end{cases}\)

Rút ra tỉ số và áp dụng dãy tỉ số bằng nhau.

 

 

Bình luận (0)
H24
1 tháng 10 2016 lúc 8:52

/vip/tranthimyduyen

Bình luận (0)
H24
1 tháng 10 2016 lúc 8:52

@Trịnh Thị Như Quỳnh 

Bình luận (0)
ND
Xem chi tiết
PT
21 tháng 7 2017 lúc 10:26

B)ĐỀ BÀI \(\Leftrightarrow\left(\frac{X}{2}\right)^3=\frac{X}{2}.\frac{Y}{3}.\frac{Z}{5}=\frac{810}{30}=27\\ \)

             \(\Leftrightarrow\frac{X}{2}=3\Rightarrow X=6\)

 TỪ ĐÓ SUY RA Y=9;Z=15

Bình luận (0)
NA
Xem chi tiết
TL
Xem chi tiết
IM
2 tháng 8 2016 lúc 7:15

a)

Ta có

\(\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{3x}{6}=\frac{y}{5}\)

Áp dụng tc của dãy tỉ só bằng nhau

\(\Rightarrow\frac{3x}{6}=\frac{y}{5}=\frac{3x-y}{6-5}=\frac{10}{1}=10\)

=> x=2.10=20

    y=5.10=50

Bình luận (0)
IM
2 tháng 8 2016 lúc 7:21

Ta có

\(\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{x^2}{4}=\frac{y^2}{25}=\frac{xy}{10}=\frac{30}{10}=3\)

\(\Rightarrow\left[\begin{array}{nghiempt}x=\sqrt{12}\\x=-\sqrt{12}\end{array}\right.\)

     \(\left[\begin{array}{nghiempt}y=\sqrt{75}\\y=-\sqrt{75}\end{array}\right.\)

Mà 2;5 cùng dấu

=> x; y cùng dấu

Vậy \(\left(x;y\right)=\left(\sqrt{12};\sqrt{75}\right);\left(-\sqrt{12};-\sqrt{75}\right)\)

Bình luận (0)
LO
2 tháng 8 2016 lúc 10:58

a) Ta có: \(\frac{x}{2}\) = \(\frac{y}{5}\) và 3x-y = 10

=> \(\frac{3x}{6}\) = \(\frac{y}{5}\) và 3x-y = 10

Áp dụng tính chất của dãy tỉ số bằng nhau ta có: 

\(\frac{3x}{6}\) = \(\frac{y}{5}\) = \(\frac{3x-y}{6-5}\) = \(\frac{11}{1}\) = 11

=> x= \(\frac{11.6}{3}\) = 22

=> y= 11.5= 55

Vậy x= 22

       y= 55

Bình luận (0)
TN
Xem chi tiết
CQ
24 tháng 3 2019 lúc 13:06

​​fddfssdfdsfdssssssssssssssffffffffffffffffffsssssssssssssssssssfsssssssssssssssssssssssfffffffffffffff
Bình luận (0)
H24
24 tháng 3 2019 lúc 13:11

Ez lắm =)

Bài 1:

Với mọi gt \(x,y\in Q\) ta luôn có: 

\(x\le\left|x\right|\) và \(-x\le\left|x\right|\) 

\(y\le\left|y\right|\) và \(-y\le\left|y\right|\Rightarrow x+y\le\left|x\right|+\left|y\right|\) và \(-x-y\le\left|x\right|+\left|y\right|\)

Hay: \(x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)

Do đó: \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)

Vậy: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)

Dấu "=" xảy ra khi: \(xy\ge0\)

Bình luận (0)
H24
24 tháng 3 2019 lúc 13:22

Bài 3: 

Ta có: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\) (vì a + b + c = 1)

Do đó: \(\left(x+y+z\right)^2=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\) (vì a2 + b2 + c2 = 1)

Vậy: (x + y + z)2 = x2 + y2 + z2

Bình luận (0)