Những câu hỏi liên quan
TC
Xem chi tiết
LH
23 tháng 10 2016 lúc 14:09

Áp dụng tính chất của dãy tỉ số bằng nhau :

\(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=\frac{a-b}{2003-2004}=\frac{b-c}{2004-2005}=\frac{c-a}{2005-2003}\)

\(\Leftrightarrow\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}\)

\(\Rightarrow\left(\frac{a-b}{-1}\right)\left(\frac{b-c}{-1}\right)=\left(\frac{c-a}{2}\right)^2\)

\(\Rightarrow\left(a-b\right)\left(b-c\right)=\frac{\left(c-a\right)^2}{4}\)

\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)

Vậy ...

Bình luận (0)
LL
Xem chi tiết
HT
Xem chi tiết
LT
3 tháng 3 2018 lúc 16:49

Đặt: \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=b\Rightarrow\hept{\begin{cases}a=2003b\\b=2004b\\c=2005b\end{cases}}\)

\(\Rightarrow4\left(a-b\right)\left(b-c\right)=4\left(2003b-2004b\right)\left(2004b-2005b\right)=4.-b.-b=4b^2\)

\(\Rightarrow\left(c-a\right)^2=\left(2005b-2003b\right)^2=2k^2=4k^2\)

\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\left(đpcm\right)\)

Bình luận (0)
DL
3 tháng 3 2018 lúc 17:11

Đặt a/2003=b/2004=c/2005=k

Suy ra a=2003k, b=2004k, c=2005k            (*)

Thay (*) vào 4(a-b)(b-c) ta được:

4(a-b)(b-c)=4(2003k-2004k) (2004k-2005k)

              =4k(2003-2004).k(2004-2005)=4k2 .-1.-1

              =4.k2                                                           (1)

Thay (*) vào (c-a)2 ta được:

(c-a)2 =(2005k-2003k)2

= k2 (2005-2003)2

=k2 .4                                                              (2)

Từ (1) và (2)

Suy ra ĐPCM

nha

Bình luận (0)
PT
Xem chi tiết
ZD
26 tháng 11 2015 lúc 20:55

Mình cũng học lớp 7 nhưng lần đầu mình thấy những loại toán này

Bình luận (0)
LQ
26 tháng 11 2015 lúc 20:56

coi \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=k\Rightarrow a=2003k;b=2004k;c=2005k\)

thay mấy cái trên vào 4(a-b)(b-c)và (c-a)2

Bình luận (0)
LN
Xem chi tiết
KS
11 tháng 8 2018 lúc 15:19

Đặt \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=k\)

\(\Rightarrow a=2003k;b=2004k;c=2005k\)

\(\Rightarrow4\left(a-b\right)\left(b-c\right)=4\left(2003k-2004k\right).\left(2004k-2005k\right)=4.\left(-k\right).\left(-k\right)=4k^2\)(1)

     \(\left(c-a\right)^2=\left(2006k-2004k\right)^2=\left(2k\right)^2=4k^2\)(2)

Từ (1) và (2) 

\(\Rightarrow4.\left(a-b\right).\left(b-c\right)=\left(c-a\right)^2\)

                                      đpcm

Tham khảo nhé~  

Bình luận (0)
CD
Xem chi tiết
BH
19 tháng 10 2016 lúc 17:47

\(\frac{a}{2003}=\frac{b}{2004}=\frac{a-b}{2003-2004}=-\left(a-b\right)\) = -(b-c)=\(\frac{c-a}{2}\)

=> -(a-b).(-(b-c)=\(\frac{c-a}{2}.\frac{c-a}{2}=\frac{\left(c-a\right)^2}{4}\)

<=> 4.(a-b).(b-c)=(c-a)2

Bình luận (0)
NN
26 tháng 10 2020 lúc 20:03

Đặt \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=k\left(k\ne0\right)\)

\(\Rightarrow a=2003k\)\(b=2004k\)\(c=2005k\)

Ta có: \(4\left(a-b\right)\left(b-c\right)=4\left(2003k-2004k\right)\left(2004k-2005k\right)\)

\(=4.\left(-k\right).\left(-k\right)=4k^2\)(1)

Mặt khác ta có: \(\left(c-a\right)^2=\left(2005k-2003k\right)^2=\left(2k\right)^2=4k^2\)(2)

Từ (1) và (2) \(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa
LD
26 tháng 10 2020 lúc 20:04

Đặt \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=k\Rightarrow\hept{\begin{cases}a=2003k\\b=2004k\\c=2005k\end{cases}}\)

*\(4\left(a-b\right)\left(b-c\right)=4\left(2003k-2004k\right)\left(2004k-2005k\right)\)

\(=4\left(-k\right)\left(-k\right)=4k^2\)(1)

*\(\left(c-a\right)^2=\left(2005k-2003k\right)^2=\left(2k\right)^2=4k^2\)(2)

Từ (1) và (2) => đpcm

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
H24
Xem chi tiết
LH
Xem chi tiết