cho \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}\)CMR 4(a-b)(b-c)=\(\left(c-a\right)^2\)
cho \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}\) chứng minh rằng : \(4\left(a-b\right).\left(b-c\right)=\left(c-a\right)^2\)
Áp dụng tính chất của dãy tỉ số bằng nhau :
\(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=\frac{a-b}{2003-2004}=\frac{b-c}{2004-2005}=\frac{c-a}{2005-2003}\)
\(\Leftrightarrow\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}\)
\(\Rightarrow\left(\frac{a-b}{-1}\right)\left(\frac{b-c}{-1}\right)=\left(\frac{c-a}{2}\right)^2\)
\(\Rightarrow\left(a-b\right)\left(b-c\right)=\frac{\left(c-a\right)^2}{4}\)
\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)
Vậy ...
Cho \(\frac{a}{b}=\frac{c}{d}\)
CMR:\(\frac{a^{2004}-b^{2004}}{a^{2004}+b^{2004}}=\frac{c^{2004}-d^{2004}}{c^{2004}+d^{2004}}\)
CMR:\(\frac{a^{2005}}{b^{2005}}=\frac{\left(a-c\right)^{2005}}{\left(b-d\right)^{2005}}\)
Giúp với ạ(mn đừng giải bằng cách đặt k nha)
Cho \(\frac{a}{2003}\)=\(\frac{b}{2004}=\frac{c}{2005}\). Chứng minh rằng :\(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)
Đặt: \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=b\Rightarrow\hept{\begin{cases}a=2003b\\b=2004b\\c=2005b\end{cases}}\)
\(\Rightarrow4\left(a-b\right)\left(b-c\right)=4\left(2003b-2004b\right)\left(2004b-2005b\right)=4.-b.-b=4b^2\)
\(\Rightarrow\left(c-a\right)^2=\left(2005b-2003b\right)^2=2k^2=4k^2\)
\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\left(đpcm\right)\)
Đặt a/2003=b/2004=c/2005=k
Suy ra a=2003k, b=2004k, c=2005k (*)
Thay (*) vào 4(a-b)(b-c) ta được:
4(a-b)(b-c)=4(2003k-2004k) (2004k-2005k)
=4k(2003-2004).k(2004-2005)=4k2 .-1.-1
=4.k2 (1)
Thay (*) vào (c-a)2 ta được:
(c-a)2 =(2005k-2003k)2
= k2 (2005-2003)2
=k2 .4 (2)
Từ (1) và (2)
Suy ra ĐPCM
nha
Cho \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}\)
Chứng minh rằng: \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)
Mình cũng học lớp 7 nhưng lần đầu mình thấy những loại toán này
coi \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=k\Rightarrow a=2003k;b=2004k;c=2005k\)
thay mấy cái trên vào 4(a-b)(b-c)và (c-a)2
1/ Cho \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}\)
Chứng minh: \(4(a-b)\left(b-c\right)=\left(c-a\right)^2\)
Đặt \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=k\)
\(\Rightarrow a=2003k;b=2004k;c=2005k\)
\(\Rightarrow4\left(a-b\right)\left(b-c\right)=4\left(2003k-2004k\right).\left(2004k-2005k\right)=4.\left(-k\right).\left(-k\right)=4k^2\)(1)
\(\left(c-a\right)^2=\left(2006k-2004k\right)^2=\left(2k\right)^2=4k^2\)(2)
Từ (1) và (2)
\(\Rightarrow4.\left(a-b\right).\left(b-c\right)=\left(c-a\right)^2\)
đpcm
Tham khảo nhé~
Cho \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}\). CMR: 4(a-b)(b-c) = (c-a)\(^2\)
\(\frac{a}{2003}=\frac{b}{2004}=\frac{a-b}{2003-2004}=-\left(a-b\right)\) = -(b-c)=\(\frac{c-a}{2}\)
=> -(a-b).(-(b-c)=\(\frac{c-a}{2}.\frac{c-a}{2}=\frac{\left(c-a\right)^2}{4}\)
<=> 4.(a-b).(b-c)=(c-a)2
Đặt \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=k\left(k\ne0\right)\)
\(\Rightarrow a=2003k\), \(b=2004k\), \(c=2005k\)
Ta có: \(4\left(a-b\right)\left(b-c\right)=4\left(2003k-2004k\right)\left(2004k-2005k\right)\)
\(=4.\left(-k\right).\left(-k\right)=4k^2\)(1)
Mặt khác ta có: \(\left(c-a\right)^2=\left(2005k-2003k\right)^2=\left(2k\right)^2=4k^2\)(2)
Từ (1) và (2) \(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)( đpcm )
Đặt \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=k\Rightarrow\hept{\begin{cases}a=2003k\\b=2004k\\c=2005k\end{cases}}\)
*\(4\left(a-b\right)\left(b-c\right)=4\left(2003k-2004k\right)\left(2004k-2005k\right)\)
\(=4\left(-k\right)\left(-k\right)=4k^2\)(1)
*\(\left(c-a\right)^2=\left(2005k-2003k\right)^2=\left(2k\right)^2=4k^2\)(2)
Từ (1) và (2) => đpcm
Cho \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}\)
CMR :4(a-b)(b-c)=(a-a)2
Cho \(\frac{a}{b}=\frac{c}{d}\)Chứng tỏ
\(\frac{\left(a^{2004}+b^{2004}\right)^5}{\left(c^{2004}+d^{2004}\right)^5}=\left(\frac{a^{2005}+b^{2005}}{c^{2005}-d^{2005}}\right)^{2004}\)
Cho \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}.\) Chứng minh rằng \(:\) \(4.\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2.\)