Những câu hỏi liên quan
BL
Xem chi tiết
NT
19 tháng 11 2019 lúc 20:42

a)\(VT=\sum_{cyc}\frac{ab^3+ab^2c+a^2bc}{\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)}\le\frac{\sum_{cyc}\left(ab^3+ab^2c+a^2bc\right)}{\left(ab+bc+ca\right)^2}\)

\(=\frac{ab^3+bc^3+ca^3+2a^2bc+2ab^2c+2abc^2}{\left(ab+bc+ca\right)^2}\)\(\le\frac{\sum_{cyc}ab\left(a^2+b^2\right)+abc\left(a+b+c\right)}{\left(ab+bc+ca\right)^2}\)

\(=\frac{\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)}{\left(ab+bc+ca\right)^2}=\frac{a^2+b^2+c^2}{ab+bc+ca}=VP\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
19 tháng 11 2019 lúc 20:49

b thiếu đề

Bình luận (0)
 Khách vãng lai đã xóa
BL
19 tháng 11 2019 lúc 12:37

@tth_new, @Nguyễn Việt Lâm, @No choice teen, @Akai Haruma

giúp e vs ạ! Cần gấp

Thanks nhiều

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
LC
Xem chi tiết
TL
23 tháng 8 2020 lúc 18:35

Bài 1: Ta có \(\left(\frac{a^2}{b}-a+b\right)+b^2=\frac{a^2-ab+b^2}{b}+b\ge2\sqrt{a^2-ab+b^2}\)  (áp dụng Bất Đẳng Thức Cosi)

\(=\sqrt{a^2-ab+b^2}+\sqrt{\frac{3}{4}\left(a-b\right)^2+\frac{1}{4}\left(a+b\right)^2}\ge\sqrt{a^2-ab+b^2}+\frac{1}{2}\left(a+b\right)\)

\(\Rightarrow\frac{a^2}{b}-a+2b\ge\sqrt{a^2-ab+b^2}+\frac{1}{2}\left(a+b\right)\left(1\right)\)

Tương tự ta có \(\hept{\begin{cases}\frac{b^2}{c}-b+2c\ge\sqrt{b^2-bc+c^2}+\frac{1}{2}\left(b+c\right)\left(2\right)\\\frac{c^2}{a}-c+2a\ge\sqrt{c^2-ac+a^2}+\frac{1}{2}\left(a+c\right)\left(3\right)\end{cases}}\)

Từ (1) và (2) và (3) \(\Rightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ac+a^2}\)

Dấu "=" xảy ra khi a=b=c

Bình luận (0)
 Khách vãng lai đã xóa
RV
Xem chi tiết
PH
18 tháng 8 2017 lúc 21:07

cái mẫu cuối c/.... có mũ 2 ko bạn

Bình luận (0)
RV
18 tháng 8 2017 lúc 21:08

dạ có ạ

Bình luận (0)
RV
18 tháng 8 2017 lúc 21:09

em viết thiếu

Bình luận (0)
IU
Xem chi tiết
TN
19 tháng 5 2017 lúc 14:45

ko khó nhưng mà bn đăng từng câu 1 hộ mk mk giải giúp cho

Bình luận (0)
H24
9 tháng 8 2020 lúc 9:26

gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

=> Thay vào thì     \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)

\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)

Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào

=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)

=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)

=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\) 

Bình luận (0)
 Khách vãng lai đã xóa
H24
9 tháng 8 2020 lúc 9:45

Đặt: \(\sqrt{a}=x;\sqrt{b}=y;\sqrt{c}=z\)

=>     \(P=\frac{xy}{z^2+3xy}+\frac{yz}{x^2+3yz}+\frac{zx}{y^2+3zx}\)

=>     \(3P=\frac{3xy}{z^2+3xy}+\frac{3yz}{x^2+3yz}+\frac{3zx}{y^2+3zx}=1-\frac{z^2}{z^2+3xy}+1-\frac{x^2}{x^2+3yz}+1-\frac{y^2}{y^2+3zx}\)

Ta sẽ CM: \(3P\le\frac{9}{4}\)<=> Cần CM: \(\frac{x^2}{x^2+3yz}+\frac{y^2}{y^2+3zx}+\frac{z^2}{z^2+3xy}\ge\frac{3}{4}\)

Có:    \(VT\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\)

Ta sẽ CM: \(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\ge\frac{3}{4}\)

<=> \(4\left(x+y+z\right)^2\ge3\left(x^2+y^2+z^2\right)+9\left(xy+yz+zx\right)\)

<=> \(4\left(x^2+y^2+z^2\right)+8\left(xy+yz+zx\right)\ge3\left(x^2+y^2+z^2\right)+9\left(xy+yz+zx\right)\)

<=> \(x^2+y^2+z^2\ge xy+yz+zx\)

Mà đây lại là 1 BĐT luôn đúng => \(3P\le\frac{9}{4}\)=> \(P\le\frac{3}{4}\)

Vậy P max \(=\frac{3}{4}\)<=> \(a=b=c\)

Bình luận (0)
 Khách vãng lai đã xóa
VH
Xem chi tiết
KD
Xem chi tiết
LC
Xem chi tiết
MD
2 tháng 1 2017 lúc 19:25

từ giả thiết ta có

\(\frac{1}{bc-a^2}=\frac{1}{b^2-ca}+\frac{1}{c^2-ab}=\frac{c^2-ab+b^2-ca}{\left(b^2-ca\right)\left(c^2-ab\right)}\)

Nhân hai vế với \(\frac{a}{bc-a^2}\) ta có:

\(\frac{a}{\left(bc-a^2\right)^2}=\frac{ac^2-a^2b+ab^2-ca^2}{\left(bc-a^2\right)\left(b^2-ca\right)\left(c^2-ab\right)}\)

làm tương tự với hai số hạng còn lại ta được:

\(\frac{b}{\left(ca-b^2\right)^2}=\frac{bc^2-ab^2+a^2b-b^2c}{\left(bc-a^2\right)\left(b^2-ca\right)\left(c^2-ab\right)}\);\(\frac{c}{\left(ab-c^2\right)^2}=\frac{b^2c-c^2a+a^2c-bc^2}{\left(bc-a^2\right)\left(b^2-ca\right)\left(c^2-ab\right)}\)

cộng ba vế của đẳng thức trên ta được kq là 0 hihi

Bình luận (2)
LF
2 tháng 1 2017 lúc 19:41

cách kia dài quá

Đặt \(x=bc-a^2;y=ac-b^2;z=ab-c^2\)

Suy ra cần chứng minh \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\) thì \(\frac{a}{x^2}+\frac{b}{y^2}+\frac{c}{z^2}=0\)

Xét \(T=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)\).....

Bình luận (0)
H24
Xem chi tiết
VL
22 tháng 5 2018 lúc 9:24

\(\frac{a}{a^2+ab+b^2}+\frac{b}{b^2+bc+c^2}+\frac{c}{c^2+ac+a^2}\)

\(=\frac{a^2}{a^3+a^2b+b^2a}+\frac{b^2}{b^3+b^2c+c^2b}+\frac{c^2}{c^3+c^2a+a^2c}\)

\(\ge\frac{\left(a+b+c\right)^2}{a^3+a^2b+b^2a+b^3+b^2c+c^2b+c^3+c^2a+a^2c}\)

\(=\frac{\left(a+b+c\right)^2}{a^2\left(a+b+c\right)+b^2\left(a+b+c\right)+c^2\left(a+b+c\right)}\)

\(=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\frac{a+b+c}{a^2+b^2+c^2}\)

Dấu "=" xảy ra khi : \(a=b=c\)

Bình luận (0)