Những câu hỏi liên quan
MB
Xem chi tiết
PA
Xem chi tiết
CN
Xem chi tiết
TH
26 tháng 4 2022 lúc 18:41

\(\left(\dfrac{1}{2}+\dfrac{1}{3}\right)x\dfrac{5}{6}=\dfrac{5}{6}x\dfrac{5}{6}=\dfrac{25}{36}\)

Bình luận (0)
DA
Xem chi tiết
NA
Xem chi tiết
NT
9 tháng 7 2023 lúc 19:57

b: Gọi giao của AH với BC là F

=>AH vuông góc BC tại F

góic CHI=góc AHD=90 độ-góc HAD=góc ABC=1/2*sđ cung AC

góc CIH=1/2*sđ cung CA

=>góc CHI=góc CIH

=>ΔCHI cân tại C

c:

góc BDC=góc BEC=90 độ

=>BDEC nội tiếp đường tròn đường kính BC

=>MD=ME

=>ΔMDE cân tại M

mà MN là trung tuyến

nên MN vuông góc DE

Kẻ tiếp tuyến Ax của (O)

=>góc xAC=góc ABC

=>góc xAC=góc AED

=>Ax//DE

=>DE vuông góc OA

=>MN//AO

Bình luận (0)
MB
Xem chi tiết
NT
8 tháng 8 2021 lúc 20:01

Câu 9:

a) Ta có: \(9x^2-16=0\)

\(\Leftrightarrow\left(3x-4\right)\left(3x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=-\dfrac{4}{3}\end{matrix}\right.\)

b) Ta có: \(4x^2=13\)

\(\Leftrightarrow x^2=\dfrac{13}{4}\)
\(\Leftrightarrow x\in\left\{\dfrac{\sqrt{13}}{2};-\dfrac{\sqrt{13}}{2}\right\}\)

c) Ta có: \(2x^2+9=0\)

\(\Leftrightarrow2x^2=-9\)(Vô lý)

d) Ta có: \(-x^2+324=0\)

\(\Leftrightarrow x^2=324\)

\(\Leftrightarrow\left[{}\begin{matrix}x=18\\x=-18\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
TT
1 tháng 12 2021 lúc 20:59

Câu 5:

a,C1:

S S'

I S R S'

còn câu b , thì mk chx đc hiểu cho lắm! 

Bình luận (0)
TT
Xem chi tiết
AH
17 tháng 7 2021 lúc 19:24

Lời giải:

b. Tam giác $ABC$ vuông tại $A$ và $C=45^0$ nên:

 $B=90^0-C=90^0-45^0=45^0$

Do đó, tam giác $ABC$ vuông cân tại $A$

$\Rightarrow AC=AB=50$ (cm)

Áp dụng định lý Pitago: $BC=\sqrt{AB^2+AC^2}=\sqrt{50^2+50^2}=50\sqrt{2}$ (cm)

f.

Theo định lý Pitago: $AC=\sqrt{BC^2-AB^2}=\sqrt{7^2-5^2}=2\sqrt{6}$ (cm)

$\sin B=\frac{AC}{BC}=\frac{2\sqrt{6}}{7}$

$\Rightarrow B=44,42^0$

$C=90^0-B=90^0-44,42^0=45,58^0$

Bình luận (0)
NT
17 tháng 7 2021 lúc 20:04

b) Xét ΔABC vuông tại A có \(\widehat{C}=45^0\)(gt)

nên ΔABC vuông cân tại A(Định nghĩa tam giác vuông cân)

Suy ra: \(\widehat{B}=45^0\) và AC=50(cm)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=50^2+50^2=5000\)

hay \(BC=50\sqrt{2}\left(cm\right)\)

Bình luận (0)
NT
17 tháng 7 2021 lúc 22:34

a) Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{B}=60^0\)

Xét ΔABC vuông tại A có 

\(AB=AC\cdot\tan30^0\)

\(=100\cdot\dfrac{\sqrt{3}}{3}\)

\(=\dfrac{100\sqrt{3}}{3}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=100^2+\left(\dfrac{100\sqrt{3}}{3}\right)^2=\dfrac{40000}{3}\)

hay \(AC=\dfrac{200\sqrt{3}}{3}\left(cm\right)\)

Bình luận (0)
NA
Xem chi tiết
NL
28 tháng 3 2022 lúc 23:23

lx

Bình luận (0)