Câu 1 : 1.2+2.3+3.4+...+30.31
Câu 2 : 1.2.3+2.3.4+3.4.5+...+30.31.32
Câu 1 : 1.2+2.3+3.4+...+30.31
Câu 2 : 1.2.3+2.3.4+3.4.5+...+30.31.32
Câu 3 : 1/1.2+1/2.3+1/3.4+...+1/30.31
Câu 4 ; 1/1.3+1/3.5+...+1/99.101
Câu 5 : 1/1.4+1/4.7+...+1/91.94
Câu 6 : 1/1.2.3+1/2.3.4+1/3.4.5+...+1/31.32.33
Câu 7 : 1.1!+2.2!+3.3!+...+10.10!
Tính tổng : 1.2 + 2.3 + 3.4 + …..+ n.(n+1)
1.2.3+ 2.3.4 + 3.4.5 + ….+ n(n+1)(n+2)
https://olm.vn/hoi-dap/tim-kiem?q=t%C3%ADnh+t%E1%BB%95ng+sau+:S+=+1.2.3+2.3.4+3.4.5+...+n.(n+1).(n+2)+&id=601088
Tính:
f) F= 1.2+2.3+3.4+...+n(n+1)
g) G= 1.2.3+2.3.4+3.4.5+...+99.100.101
h) H= 1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)
i) I= 1.3+2.4+3.5+...+99.100
j) J= 1.4+2.5+3.6+...+99.102
Tính E = 1/1.2-1/1.2.3+1/2.3-1/2.3.4+1/3.4-1/3.4.5+...+1/99.100-1/99.100.101
\(E=\frac{1}{1.2}-\frac{1}{1.2.3}+\frac{1}{2.3}-\frac{1}{2.3.4}+....+\frac{1}{99.100}-\frac{1}{99.100.101}\)
\(=\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)-\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{99.100.101}\right)\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{99.100.101}\)
\(=\frac{1}{2}\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+...+\frac{101-99}{99.100.101}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{100.101}\right)=\frac{5049}{20200}\)
Suy ra \(E=A-B=\frac{99}{100}-\frac{5049}{20200}=\frac{14949}{20200}\)
\(\frac{14949}{20200}\)
Tính giá trị của biểu thức :
a = 1.2+2.3+3.4+........+99.100
c = 1.2.3+2.3.4+3.4.5+.....+49.50.51
A = 1.2 + 2.3 + ... + 99.100
3A = 1.2.3 + 2.3.(4-1) + ... + 99.100.(101-98)
3A = 1.2.3 + 2.3.4 - 1.2.3 + ... + 99.100.101 - 98.99.100
3A = 99.100.101
3A = 999900
A = 333300
C = 1.2.3 + 2.3.4 + ... + 49.50.51
4C = 1.2.3.4 + 2.3.4.(4-1) + ... + 49.50.51.(52-48)
4c = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + ... + 49.50.51.52 - 48.49.50.51
4C = 49.50.51.52
4C = 6497400
C = 1624350
Ta có :
a=1.2+2.3+3.4+...+99.100
3a=1.2.3+2.3.3+3.4.3+...+99.100.3
3a=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
3a=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
3a=99.100.101
a=\(\frac{99.100.101}{3}\)
a=333300
Tính c làm tương tự
a = 1.2 + 2.3 + 3.4 + ... + 99.100
3a = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3
3a = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 99.100. (101 - 98)
3a = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100
3a = 99 . 100 . 101
3a = 3 . 33 . 100 . 101
a = 33 . 100 . 101
a = 333300
A=1.2+2.3+3.4+4.5+...1999.2000
B=1.1+2.2+3.3+4.4+....1999.1999
C=1.2.3+2.3.4+3.4.5+....+48.49.50
tính giá trị của biểu thức
A=4/1.2 + 4/2.3 + 4/3.4 + ... + 4/2019.2020
B=1/1.2.3 + 1/2.3.4 + 1/3.4.5 +... + 1/98.99.100
\(A=\frac{4}{1.2}+\frac{4}{2.3}+\frac{4}{3.4}+...+\frac{4}{2019.2020}\)
\(\frac{1}{4}A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)
\(\frac{1}{4}A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(\frac{1}{4}A=1-\frac{1}{2020}=\frac{2019}{2020}\)
\(\Rightarrow A=\frac{2019}{2020}:\frac{1}{4}=\frac{2019}{505}\)
Vậy \(A=\frac{2019}{505}.\)
\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)
\(\Rightarrow2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\)
\(2B=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\)
\(2B=\frac{1}{1.2}-\frac{1}{99.100}=\frac{4949}{9900}\)
\(\Rightarrow B=\frac{4949}{9900}:2=\frac{4949}{19800}\)
Vậy \(B=\frac{4949}{19800}.\)
\(A=\frac{4}{1\cdot2}+\frac{4}{2\cdot3}+\frac{4}{3\cdot4}+...+\frac{4}{2019\cdot2020}\)
\(A=4\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2018\cdot2019}\right)\)
\(A=4\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}\right)\)
\(A=4\left(1-\frac{1}{2019}\right)=4\cdot\frac{2018}{2019}\)
Đến đây tự tính
\(B=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{98\cdot99\cdot100}\)
\(B=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{98\cdot99\cdot100}\right)\)
\(B=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\right)\)
\(B=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{99\cdot100}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)\)
Số hơi bị dữ nên tính nốt nhé
a) \(A=\frac{4}{1.2}+\frac{4}{2.3}+\frac{4}{3.4}+........+\frac{4}{2019.2020}\)
\(=4.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{2019.2020}\right)\)
\(=4.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+........+\frac{1}{2019}-\frac{1}{2020}\right)\)
\(=4.\left(1-\frac{1}{2020}\right)=4.\frac{2019}{2020}=\frac{2019}{505}\)
Tính:
f) F=1.2+2.3+3.4+...+n(n+1)
g) G= 1.2.3+2.3.4+3.4.5+...+99.100.101
h) H= 1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)
i) I= 1.3+2.4+3.5+...+99.100
j) J= 1.4+2.5+3.6+...+99.102
Ai giải nhanh nhất chọn đầu tiên
3F= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)]
=n(n+1)(n+2)
=>F
H=1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)
=> 4H=1.2.3(4-0)+2.3.4(5-1)+...+n(n+1)(n+2)((n+3)-(n-1))
=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+n(n+1)(n+2)(n+3)-(n-1).n(n+1)(n+2)
=n(n+1)(n+2)(n+3)
Nhân biểu thức S với số 5, ta có:
5.S = 1.2.3.4.5 + 2.3.4.5.5 + 3.4.5.6.5 + ... + 97.98.99.100.5
Biểu diễn số 5 ở mỗi số hạng vế phải bằng phép trừ thích hợp: 5 = 5 - 0 = 6 - 1 = 7 - 2 = ... = 101 - 96, ta có
5.S = 1.2.3.4.(5 - 0) + 2.3.4.5.(6 - 1) + 3.4.5.6.(7 - 2) + ...+ 97.98.99.100.(101 - 96)
= (1.2.3.4.5 - 1.2.3.4.0) + (2.3.4.5.6 - 2.3.4.5.1) + (3.4.5.6.7 - 3.4.5.6.2) + ... + (97.98.99.100.101 - 97.98.99.100.96)
= 1.2.3.4.5 - 0.1.2.3.4 + 2.3.4.5.6 - 1.2.3.4.5 + 3.4.5.6.7 - 2.3.4.5.6 + ... + 97.98.99.100.101 - 96.97.98.99.100
= 97.98.99.100.101 - 0.1.2.3.4
= 97.98.99.100.101
Suy ra
S = 97.98.99.100.101/5 = 97.98.99.20.101. Đến đây thì bạn dùng máy tính bấm ra S=1901009880
Tính tổng :
a) 1.2 + 2.3 + 3.4 + ... + n.(n+1)
b) 1.2.3 + 2.3.4 + 3.4.5 + ... + n(n+1)(n+2)
Với n là số tự nhiên khác 0