Chứng minh rằng tồn tại 1 số có dạng 2017^k-1:2016
Dấu ":" là dấu chia hết
chứng minh rằng tồn tại số có dạng 20162016...2016 gồm k số 2016(k là số tự nhiên, 1<k<2018) chia hết cho 2017
Chứng minh rằng tồn tại 1 số có dạng 2n -1 chia hết cho 2017
Chứng minh rằng tồn tại số có dạng : 201620162016...2016 chia hết cho 2017
Chứng minh rằng trong tập nguyên dương luôn tồn tại số k sao cho 2017^k-1 chia hết cho 10^5
Tham khảo bài này :
cách 1:
xét 3^k.
chọn k từ 1 đến 999 ta được dãy số
3; 3² ; 3³;...; 3^999
999 số trên khi chia cho 1000 sẽ được 999 số dư
(0,1...999)
xét 2 trh:
trh 1: số dư của các số trong dãy đôi một khác nhau
=> tồn tại một số trong dãy chia 1000 dư 1
=> 3^a -1 chia hết 1000
=> đpcm
trh2: số dư của các số trong dãy không khác nhau đôi một
=> sẽ có it nhất 2 số đồng dư
2 số đó là: 3^m và 3ⁿ (1≤m<n≤999)
=> hiệu của 2 số này chia hết cho 1000
=> 3ⁿ - 3^m = h.1000
mà: 3ⁿ - 3^m = 3^m.(3^(n-m) -1)
lại có: 3^m không chia hết cho 1000
=> 3^(n-m) - 1 chia hết cho 1000
mà 1≤m<n≤999 => 0 ≤ n - m ≤ 999
=> đpcm
vậy tồn tại số k thuộc N sao cho 3^k-1 chia hết 1000
.......... .......
cách 2:
xét k= 2n (n chẵn)
A= 3^(2n) -1
A= (10-1)^n -1
khai triển nhị thức ta đc:
A= 10ⁿ - 1Cn.10^(n-1) + 2Cn.10^(n-2) +...+ (n-2)Cn.10^2 - (n-1)Cn.10 +1 -1
A= 1000.[10^(n-2) -.....(n-3)Cn] + 100.n.(n+1)\2 - 10n
lấy n= 100m
=>B= n.(n+1)\2.100 - 10n
=>B= 1000.(50.101m -m)
=> A chia hết 1000 khi k= 200m
Bài toán 1 : Chứng minh rằng mọi số nguyên tố p ta có thể tìm được một số được viết bởi hai chữ số chia hết cho p.
Bài toán 2 : Chứng minh rằng nếu một số tự nhiên không chia hết cho 2 và 5 thì tồn tại bội của nó có dạng : 111...1.
Bài toán 3 : Chứng minh rằng tồn tại số có dạng 1997k (k thuộc N) có tận cùng là 0001.
Bài toán 4 : Chứng minh rằng nếu các số nguyên m và n nguyên tố cùng nhau thì tìm được số tự nhiên k sao cho mk - 1 chia hết cho n
Chứng minh rằng tồn tại số có dạng :
a) 201520152015....201500....000 chia hết cho 2016
b) 201620162016...2016 chia hết cho 2017
a) Xét 2017 số: 2015;20152015;...
Khi chia số hạng của dãy cho 2016 thì sẽ có hai phép chia có cùng số dư.Giả sử 2 số đó là: a= 201520152015..2015(m số 2015) b= 201520152015...2015(n số 2015) (với 1=< n<m=< 2017)
=> Hiệu của a và b chia hết cho 2016 hay:
a-b=20152015...2015000chia hết cho 2016 (đpcm)
20162016...201600...000 chia het cho 2017
Chứng minh rằng luôn tồn tại số có dạng 20162016...2016 (gồm các số 2016 viết liên tiếp nhau) chia hết cho 2017.
Xét các số :2016;20162016;..........;2016;...;2016(2018 số 2016)
Có 2018 số nên chia cho 2017 có ít nhất 2 số đồng dư
Giả sử số đó là 2016..........2016 (m số 2016) và 2016.......2016(n số 2016) (m;n E N m>n)
Suy ra 2016.........2016-2016.......2016 chia hết cho 2017
m số 2016 n số 2016
Suy ra 2016...........2016x1000
m-n số 2016
Mà (1000 n ;2017)=1
Suy ra 2016.......2016 chia hết cho 2017(m-n số 2016) (đpcm)
dùng dirichle, xét 2018 số 2016,20162016,....,20162016...2016(2018 số 2016) thì luôn tồn tại 2 số có hiệu chia hết cho 2017, gọi hai số đó là
20162016...2016(m số 2016) và 20162016...2016(n số 2016) trong đó 1≤m≤n≤20181≤m≤n≤2018
hiệu của chúng là 20162016...201600..0(n số 2016 và m-n số 0) chia hết cho 2017
rút 10m−n10m−n ra và để ý (10m−n;2017)=1(10m−n;2017)=1.
do đó ta có đpcm
chứng minh rằng tồn tại số tự nhiên có tận cùng là 2016 chia hết cho 2017
nếu lấy A=2.3.4...2015.2016.2017, thì A chia hết cho 2,3,...2015,2016,2017
và dãy 2015 só bắt đầu từ A+2 đều là hợp số :
A+2;A+3;...;A+2015;A+2015;A+2017
bởi vì A+2 chia hết cho 2
A+3 chia hết cho 3
.......
A+2016 chia hết 2016
A+2017 chia hết 2017 ( ĐPCM)
tick nhé
CHỨNG MINH RẰNG TỒN TẠI 1 SỐ GỒM TOÀN CHỮ SỐ 6 CHIA HẾT CHO 2017