so sánh
\(\left(\frac{1}{2}\right)^{12}và\left(\frac{1}{3}\right)^{18}\)
so sánh
a)\(\left(\frac{1}{2}\right)^{27}và\left(\frac{1}{3}\right)^{18}\) b)\(\frac{-53}{78}và\frac{-57}{87}\)
a)Ta có:
\(\left(\frac{1}{2}\right)^{27}=\left[\left(\frac{1}{2}\right)^3\right]^9=\left(\frac{1}{8}\right)^9\)
\(\left(\frac{1}{3}\right)^{18}=\left[\left(\frac{1}{3}\right)^2\right]^9=\left(\frac{1}{9}\right)^9\)
Vì \(\left(\frac{1}{8}\right)^9>\left(\frac{1}{9}\right)^9\) nên \(\left(\frac{1}{2}\right)^{27}>\left(\frac{1}{3}\right)^{18}\)
So sánh : \(\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{1000^2}-1\right)Và\frac{-1}{2}\)
So sánh : A = \(\frac{31}{23}+\left(\frac{7}{23}+\frac{8}{2}\right)\)và B = \(\left(\frac{1}{3}+\frac{12}{67}+\frac{13}{41}\right)-\left(\frac{79}{67}+\frac{28}{41}\right)\)
Cho A=\(\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{2013^2}-1\right)..\left(\frac{1}{2014^2}-1\right)\&B=\frac{1}{2}\) so sánh A và B
Ta có
\(A=\frac{\left(1^2-2^2\right)\left(1^2-3^2\right).....\left(1^2-2014^2\right)}{\left(2.3.4.....2014\right)\left(2.3....2014\right)}\)
\(\Leftrightarrow A=\frac{\left(-1\right)3\left(-2\right)4.....\left(-2013\right)2015}{\left(2.3.4.....2014\right)\left(2.3....2014\right)}\)
\(\Leftrightarrow A=\frac{\left[\left(-1\right)\left(-2\right)...\left(-2013\right)\right]\left(3.4.5...2015\right)}{\left(2.3.4.....2014\right)\left(2.3....2014\right)}\)
\(\Leftrightarrow A=\frac{\left(-1\right)2015}{2014.2}=-\frac{2015}{4028}< -\frac{2014}{4028}=-\frac{1}{2}\)
=> A<-1/2
so sánh\(A=\frac{31}{13}-\left(\frac{7}{32}+\frac{8}{2}\right)vaB=\left(\frac{1}{3}+\frac{12}{67}+\frac{13}{41}\right)-\left(\frac{79}{67}-\frac{28}{41}\right)\)
so sánh: A= \(\frac{31}{23}-\left[\frac{7}{32}+\frac{8}{2}\right]\) và B=\(\left[\frac{1}{3}+\frac{12}{67}+\frac{13}{41}\right]-\left[\frac{79}{67}-\frac{28}{41}\right]\)
So sánh các số :
\(\left(\frac{1}{2}\right)^1;\left(\frac{1}{3}\right)^{-1};\left(\frac{1}{2}\right)^2;\left(\frac{1}{4}\right)^{-1};\left(\frac{1}{3}\right)^{-2}\)
Cho mk sửa xíu : ( 1/2)^-1 ; (1/2)^-2
(1/2)^-1=2
(1/2)^-2=4
có 2<4
=>(1/2)^-1<(1/2)^-2
Ta có :
\(\left(\frac{1}{2}\right)^{-1}=\left(2^{-1}\right)^{-1}=2\)
\(\left(\frac{1}{3}\right)^{-1}=3\)
\(\left(\frac{1}{2}\right)^{-2}=\left(2^{-1}\right)^{-2}=2^2=4\)
\(\left(\frac{1}{4}\right)^{-1}=\left(4^{-1}\right)^{-1}=4\)
\(\left(\frac{1}{3}\right)^{-2}=\left(3^{-1}\right)^{-2}=3^2=9\)
Do đó ta có :
\(\left(\frac{1}{2}\right)^{-1}< \left(\frac{1}{3}\right)^{-1}< \left(\frac{1}{2}\right)^{-2}=\left(\frac{1}{4}\right)^{-1}< \left(\frac{1}{3}\right)^{-2}\)
cho \(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{2016^2}-1\right)\left(\frac{1}{2017^2}-1\right)\)và b=-1/2
Hãy so sánh A với B
Ta có:
\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)..\left(\frac{1}{2017^2}-1\right)\)
\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{2017^2}-1\right)\)
\(A=\left(-\frac{3}{2^2}\right)\left(\frac{-8}{3^2}\right)\left(\frac{-15}{4^2}\right)...\left(\frac{-\left(1-2017^2\right)}{2017^2}\right)\)
( có 2016 thừa số)
\(A=\frac{3.8.15...\left(1-2017^2\right)}{2^2.3^2.4^2...2017^2}\)
\(A=\frac{\left(1.3\right)\left(2.4\right)...\left(2016.2018\right)}{\left(2.2\right)\left(3.3\right)\left(4.4\right)...\left(2017.2017\right)}\)
\(A=\frac{\left(1.2.3....2016\right)\left(3.4.5....2018\right)}{\left(2.3.4...2017\right)\left(2.3.4...2017\right)}\)
\(A=\frac{1.2018}{2017.2}\)
\(A=\frac{1009}{2017}\)
Ta có : \(\frac{1009}{2017}>0\) (vì tử và mẫu cùng dấu)
\(\frac{-1}{2}< 0\) (vì tử và mẫu khác dấu)
Vậy A>B
So sánh:
A = \(\frac{31}{23}-\left(\frac{7}{32}+\frac{8}{2}\right)\)và B = \(\left(\frac{1}{3}+\frac{12}{67}+\frac{13}{41}\right)-\left(\frac{79}{67}-\frac{28}{41}\right)\)