Những câu hỏi liên quan
YT
Xem chi tiết
TP
21 tháng 12 2016 lúc 10:58

Vì p là số nguyên tố lớn hơn 3. khi chia p cho 3 ta có 2 dạng: p=3k+1 ; p=3k+2 (k thuộc N*)

Nếu p= 3k+2 => p+4= 3k +2 + 4 = 3k + 6 chia hết choa 2 và lớn hơn 2.

=> p+4 là hợp số ( trái với đề, loại)

vậy p = 3k+1.

=> 8p + 1 = 8(3k+1)+1 = 24k+8 +1=24k+9 chia hết cho 3 và lớn hơn 3.

=> 8p+1 là hợp số.

Vậy 8p+1 là hợp số(đpcm)

Bình luận (0)
YT
Xem chi tiết
TP
21 tháng 12 2016 lúc 11:22

a) vì p là số nguyên tố lớn hơn 3. => khi chia p cho 3 ta có 2 dạng: p=3k+1 hoặc p=3k+2 (kϵ N*)

Nếu p=3k+2 => p+4 =3k+2+4=3k+6 chia hết cho 3 và lớn hơn 3.

=> p+4 là hợp số( trái với đề, loại)

vậy p=3k+1.

=> p+8 = 3k+1+8=3k+9 chia hết cho 3 và lớn hơn 3.

=> p+8 là hợp số.

Kết luận: p+8 là hợp số.(đpcm) ha

b) hình như còn thiếu cái điều kiện gí ý!? làm mình mệt mỏi quá.gianroi

ok

Bình luận (1)
YT
21 tháng 12 2016 lúc 21:55

Mk thanghoa lên thiên đàng rồi, sao ko ai giúp mk vậy

Bình luận (0)
H24
Xem chi tiết
H24
10 tháng 4 2017 lúc 21:42

a) p=1 và 8x1 là số nguyên tố

CM:8x số tự nhiên khng lá số nguyên tố

b) cho q là số nguyên tố >3

thì p=1

CM p+1 chia hết cho 6 khi p+1 là bội của 6

Bình luận (0)
T1
Xem chi tiết
NL
2 tháng 4 2023 lúc 9:46

- Với \(p=3\Rightarrow\) \(8p+1=25\) là hợp số

- Với \(p>3\) \(\Rightarrow p⋮̸3\Rightarrow\left[{}\begin{matrix}p=3k+1\\p=3k+2\end{matrix}\right.\)

+ Với \(p=3k+2\Rightarrow8p-1=8\left(3k+2\right)-1=24k+15=3\left(8k+5\right)⋮3\) không phải là số nguyên tố (không phù hợp giả thiết \(\Rightarrow\) loại)

+ Với \(p=3k+1\Rightarrow8p+1=8\left(3k+1\right)+1=3\left(8k+3\right)⋮3\) là hợp số

Vậy \(8p+1\) luôn là hợp số

Bình luận (0)
TN
Xem chi tiết

* Nếu p = 3 => 8p-1 = 23: nguyên tố, 8p+1 = 25 là hợp số : thỏa 

* Xét: p # 3 
Thấy: p-1, p, p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3 
p nguyên tố khác 3 nên p-1 hoặc p+1 chia hết cho 3 => (p-1)(p+1) chia hết cho 3 

Vậy: 
(8p-1)(8p+1) = 64p²-1 = 63p² + p² -1 = 3.21p² + (p-1)(p+1) chia hết cho 3 
vì 8p-1 là số nguyên tố lớn hơn 3 => 8p+1 chia hết cho 3, hiển nhiên 8p+1 > 3 
=> 8p+1 là hợp số 
---------- 
Cách khác: 
phân tích: 8p-1 = 9p - (p+1) ; 8p+1 = 9p - (p-1) 
xét 3 số nguyên liên tiếp: p-1, p, p+1 
p và p+1 không thể chia hết cho 3 (xét riêng p = 3 như trên) 
=> p-1 chia hết cho 3 => 8p+1 = 9p - (p-1) chia hết cho 3

Bình luận (0)
TT
Xem chi tiết
DA
Xem chi tiết
SM
12 tháng 9 2018 lúc 20:50

Có P là số nguyên tố nên P không chia hết cho 3

Mà 8 cũng không chia hết cho 3

suy ra 8P không chia hết cho 3

Vì 8P - 1 là số nguyên tố 

suy ra 8P - 1 không chia hết cho 3

Vì trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3

Mà trong 3 số tự nhiên liên tiếp : 8P - 1; 8P; 8P + 1

Hai số 8P - 1 và 8P đều không chia hết cho 3

nên 8P + 1 chia hết cho 3

Nên 8P + 1 là hợp số. 

Bình luận (0)
HL
Xem chi tiết
NV
12 tháng 10 2015 lúc 14:58

* Nếu p = 3 => 8p-1 = 23: nguyên tố, 8p+1 = 25 là hợp số : thỏa 

* Xét: p # 3 
Thấy: p-1, p, p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3 
p nguyên tố khác 3 nên p-1 hoặc p+1 chia hết cho 3 => (p-1)(p+1) chia hết cho 3 

Vậy: 
(8p-1)(8p+1) = 64p²-1 = 63p² + p² -1 = 3.21p² + (p-1)(p+1) chia hết cho 3 
vì 8p-1 là số nguyên tố lớn hơn 3 => 8p+1 chia hết cho 3, hiển nhiên 8p+1 > 3 
=> 8p+1 là hợp số 
---------- 
Cách khác: 
phân tích: 8p-1 = 9p - (p+1) ; 8p+1 = 9p - (p-1) 
xét 3 số nguyên liên tiếp: p-1, p, p+1 
p và p+1 không thể chia hết cho 3 (xét riêng p = 3 như trên) 
=> p-1 chia hết cho 3 => 8p+1 = 9p - (p-1) chia hết cho 3

Bình luận (0)
TK
25 tháng 10 2016 lúc 21:13

dễ ko thèm làm

Bình luận (0)
TA
7 tháng 12 2016 lúc 12:46

Thieu 1 vai cho do

Bình luận (0)
GM
Xem chi tiết
LT
27 tháng 7 2015 lúc 7:25

* Xét: p \(\ne\)3
Thấy: 8p-1, 8p, 8p+1 là 3 số nguyên liên tiếp

  \(\Rightarrow\)phải có 1 số chia hết cho 3.
8p -1 và 8p > 3 không chia hết cho 3
\(\Rightarrow\) 8p + 1 chia hết cho 3 và > 3
\(\Rightarrow\) 8p + 1 là hợp số

Bình luận (0)