Cho p và 8p - 1 là các số nguyên tố. Cm : 8p + 1 là hợp số
a. cho p và p + 4 là các số nguyên tố lớn hơn 3. Cm : p + 8 là hợp số
b. Cho p và 8p - 1 là các số nguyên tố. Cm : 8p + 1 là hợp số
Vì p là số nguyên tố lớn hơn 3. khi chia p cho 3 ta có 2 dạng: p=3k+1 ; p=3k+2 (k thuộc N*)
Nếu p= 3k+2 => p+4= 3k +2 + 4 = 3k + 6 chia hết choa 2 và lớn hơn 2.
=> p+4 là hợp số ( trái với đề, loại)
vậy p = 3k+1.
=> 8p + 1 = 8(3k+1)+1 = 24k+8 +1=24k+9 chia hết cho 3 và lớn hơn 3.
=> 8p+1 là hợp số.
Vậy 8p+1 là hợp số(đpcm)
a. cho p và p + 4 là các số nguyên tố lớn hơn 3. Cm : p + 8 là hợp số
b. Cho p và 8p - 1 là các số nguyên tố. Cm : 8p + 1 là hợp số
**********
Giúp mk nha, giải câu a hay b cx được
a) vì p là số nguyên tố lớn hơn 3. => khi chia p cho 3 ta có 2 dạng: p=3k+1 hoặc p=3k+2 (kϵ N*)
Nếu p=3k+2 => p+4 =3k+2+4=3k+6 chia hết cho 3 và lớn hơn 3.
=> p+4 là hợp số( trái với đề, loại)
vậy p=3k+1.
=> p+8 = 3k+1+8=3k+9 chia hết cho 3 và lớn hơn 3.
=> p+8 là hợp số.
Kết luận: p+8 là hợp số.(đpcm)
b) hình như còn thiếu cái điều kiện gí ý!? làm mình mệt mỏi quá.
Mk lên thiên đàng rồi, sao ko ai giúp mk vậy
a)Cho p và 8p-1 là số nguyên tố
CM 8p+1 là hợp số
b)Cho p là số nguyên tố > 3
Biết p+2 là số nguyên tố
CM p+1 chia hết cho 6
a) p=1 và 8x1 là số nguyên tố
CM:8x số tự nhiên khng lá số nguyên tố
b) cho q là số nguyên tố >3
thì p=1
CM p+1 chia hết cho 6 khi p+1 là bội của 6
Cho p và 8p-1 là các số nguyên tố. Chứng minh 8p+1 là hợp số
- Với \(p=3\Rightarrow\) \(8p+1=25\) là hợp số
- Với \(p>3\) \(\Rightarrow p⋮̸3\Rightarrow\left[{}\begin{matrix}p=3k+1\\p=3k+2\end{matrix}\right.\)
+ Với \(p=3k+2\Rightarrow8p-1=8\left(3k+2\right)-1=24k+15=3\left(8k+5\right)⋮3\) không phải là số nguyên tố (không phù hợp giả thiết \(\Rightarrow\) loại)
+ Với \(p=3k+1\Rightarrow8p+1=8\left(3k+1\right)+1=3\left(8k+3\right)⋮3\) là hợp số
Vậy \(8p+1\) luôn là hợp số
CM 8p - 1 và 8p + 1 không cùng là số nguyên tố hay hợp số
* Nếu p = 3 => 8p-1 = 23: nguyên tố, 8p+1 = 25 là hợp số : thỏa
* Xét: p # 3
Thấy: p-1, p, p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3
p nguyên tố khác 3 nên p-1 hoặc p+1 chia hết cho 3 => (p-1)(p+1) chia hết cho 3
Vậy:
(8p-1)(8p+1) = 64p²-1 = 63p² + p² -1 = 3.21p² + (p-1)(p+1) chia hết cho 3
vì 8p-1 là số nguyên tố lớn hơn 3 => 8p+1 chia hết cho 3, hiển nhiên 8p+1 > 3
=> 8p+1 là hợp số
----------
Cách khác:
phân tích: 8p-1 = 9p - (p+1) ; 8p+1 = 9p - (p-1)
xét 3 số nguyên liên tiếp: p-1, p, p+1
p và p+1 không thể chia hết cho 3 (xét riêng p = 3 như trên)
=> p-1 chia hết cho 3 => 8p+1 = 9p - (p-1) chia hết cho 3
Cho p và 8p-1 là các số nguyên tố .CMR 8p+1 là hợp số
Cho P và 8P-1 là các số nguyên tố. Chứng minh 8P+1 là hợp số
Có P là số nguyên tố nên P không chia hết cho 3
Mà 8 cũng không chia hết cho 3
suy ra 8P không chia hết cho 3
Vì 8P - 1 là số nguyên tố
suy ra 8P - 1 không chia hết cho 3
Vì trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3
Mà trong 3 số tự nhiên liên tiếp : 8P - 1; 8P; 8P + 1
Hai số 8P - 1 và 8P đều không chia hết cho 3
nên 8P + 1 chia hết cho 3
Nên 8P + 1 là hợp số.
Cho p và 8p-1 là các số nguyên tố. chứng minh rằng 8p+1 là hợp số
* Nếu p = 3 => 8p-1 = 23: nguyên tố, 8p+1 = 25 là hợp số : thỏa
* Xét: p # 3
Thấy: p-1, p, p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3
p nguyên tố khác 3 nên p-1 hoặc p+1 chia hết cho 3 => (p-1)(p+1) chia hết cho 3
Vậy:
(8p-1)(8p+1) = 64p²-1 = 63p² + p² -1 = 3.21p² + (p-1)(p+1) chia hết cho 3
vì 8p-1 là số nguyên tố lớn hơn 3 => 8p+1 chia hết cho 3, hiển nhiên 8p+1 > 3
=> 8p+1 là hợp số
----------
Cách khác:
phân tích: 8p-1 = 9p - (p+1) ; 8p+1 = 9p - (p-1)
xét 3 số nguyên liên tiếp: p-1, p, p+1
p và p+1 không thể chia hết cho 3 (xét riêng p = 3 như trên)
=> p-1 chia hết cho 3 => 8p+1 = 9p - (p-1) chia hết cho 3
cho p và 8p-1 là các số nguyên tố chứng minh rằng 8p+1 là hợp số
* Xét: p \(\ne\)3
Thấy: 8p-1, 8p, 8p+1 là 3 số nguyên liên tiếp
\(\Rightarrow\)phải có 1 số chia hết cho 3.
8p -1 và 8p > 3 không chia hết cho 3
\(\Rightarrow\) 8p + 1 chia hết cho 3 và > 3
\(\Rightarrow\) 8p + 1 là hợp số