Những câu hỏi liên quan
TN
Xem chi tiết
H24
Xem chi tiết
ND
23 tháng 2 2020 lúc 15:20

\(\frac{x+3}{2015}+\frac{x+2}{2016}+\frac{x+1}{2017}\le-3\)

\(\Leftrightarrow\frac{x+3}{2015}+1+\frac{x+2}{2016}+1+\frac{x+1}{2017}+1\le0\)

\(\Leftrightarrow\frac{x+2018}{2015}+\frac{x+2018}{2016}+\frac{x+2018}{2017}\le0\)

\(\Leftrightarrow\left(x+2018\right)\left(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}\right)\le0\)

\(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}>0\)

⇒ x + 2018 < 0 ⇔ x < - 2018

Bình luận (0)
 Khách vãng lai đã xóa
NL
23 tháng 2 2020 lúc 15:20

\(\frac{x+3}{2015}+\frac{x+2}{2016}+\frac{x+1}{2017}\le-3\) \(\Leftrightarrow\frac{x+2018}{2015}+\frac{x+2018}{2016}+\frac{x+2018}{2017}\le0\) \(\Leftrightarrow\left(x+2018\right)\left(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}\right)\le0\)

\(\Leftrightarrow x+2018;\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2017}\) khác dấu \(\Leftrightarrow x+2018\le0\Leftrightarrow x\le-2018\)

Vậy .............

sai bạn sửa nhé :))

Bình luận (0)
 Khách vãng lai đã xóa
MX
Xem chi tiết
H24
21 tháng 12 2016 lúc 13:20

\(\Leftrightarrow\frac{2016}{-x}-2017< 0\Leftrightarrow\frac{2016+2017.x}{-x}< 0\)

\(\orbr{\begin{cases}x>0\\x< -\frac{2016}{2017}\end{cases}}\)

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 6 2018 lúc 10:43

Đáp án C

Bình luận (0)
HF
Xem chi tiết
HH
Xem chi tiết
HN
2 tháng 11 2016 lúc 19:11

Xét : 

1. Nếu x = 2016 hoặc x = 2017 thì thỏa mãn đề bài

2. Nếu \(x< 2016\) thì \(\left|x-2016\right|^{2016}>0\) , \(\left|x-2017\right|^{2017}>1\)

Suy ra \(\left|x-2016\right|^{2016}+\left|x-2017\right|^{2017}>1\)=> Vô nghiệm.

3. Nếu \(x>2017\) thì \(\left|x-2016\right|^{2016}>1\) , \(\left|x-2017\right|^{2017}>0\)

Suy ra \(\left|x-2016\right|^{2016}+\left|x-2017\right|^{2017}>1\) => Vô nghiệm.

Vậy pt có hai nghiệm là ............................ 

Bình luận (0)
PL
4 tháng 3 2018 lúc 14:50

nếu 2016<x<2017 thì sao?

Bình luận (0)
TA
Xem chi tiết
TA
Xem chi tiết
HN
2 tháng 11 2016 lúc 19:11

Bài trên mình đã giải rồi, hai nghiệm là x = 2016 và x = 2017

Bình luận (0)
TA
Xem chi tiết
HR
3 tháng 11 2016 lúc 17:43

Xét:

1.Nếu \(x=2016\)hoặc \(x=2017\)thì thỏa mãn đề bài

2. Nếu \(x< 2016\)thì l\(x-2016\)l\(^{2016}\)>0, lx-2017l\(^{2017}\)>1

=>lx-2016l\(^{2016}\)+lx-2017l\(^{2017}\)>1 => vô nghiệm 

3.Nếu x>2017 thì lx-2016l\(^{2016}\)>1,lx-2017l\(^{2017}\)>0

=>lx-2016l\(^{2016}\)+lx-2017l\(^{2017}\)>1=> vô nghiệm

Vậy phương trình có 2 nghiệm là ..................

Bình luận (0)