Những câu hỏi liên quan
TH
Xem chi tiết
H24
11 tháng 8 2016 lúc 13:47

1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)

\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)

=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

=>\(x=3\cdot20=60\)

    \(y=3\cdot24=72\)

    \(z=3\cdot21=63\)

Bình luận (0)
H24
11 tháng 8 2016 lúc 14:16

3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)

=> \(x=1\cdot15=15\)

     \(y=1\cdot7=7\)

     \(z=1\cdot3=3\)

     \(t=1\cdot1=1\)

Bình luận (0)
KL
2 tháng 9 2018 lúc 14:34

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

Bình luận (0)
NT
Xem chi tiết
LP
26 tháng 9 2017 lúc 17:50

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)

\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\frac{x}{8}=2\Rightarrow x=16\)

\(\frac{y}{12}=2\Rightarrow y=24\)

\(\frac{z}{5}=2\Rightarrow z=10\)

Bình luận (0)
NT
30 tháng 9 2017 lúc 13:29

k minh nha

Bình luận (0)
ND
27 tháng 11 2017 lúc 20:51

Tự túc là hạnh phúc

Bình luận (0)
PH
Xem chi tiết
CN
16 tháng 7 2016 lúc 10:58

2). Ta có: x/2=y/3 => x/8 = y/12

                y/4=z/5 => y/12 = z/15

=> x/2=y/12=z/15 và x+y-z=10

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{2}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)=\(\frac{x+y-z}{2+12-15}\)=\(\frac{10}{-1}\)= -10

=> x=2.(-10)=-20

     y=12.(-10)=-120

     z=15.(-10)=-150

Vậy x=-20; y=-120;z=-150

3). Đặt \(\frac{x}{2}\)=\(\frac{y}{5}\)= k

=> x=2k

     y=5k

Ta có xy = 10

       2k.5k =10

       10. k2=10

       k2      = 10 :10=1

=> k =1; k=-1

+) k = 1

=> x=2.1=2

     y=5.1=5

+) k = -1

=> x= 2.(-1) =-2

     y=5.(-1) = -5

Vậy x=2;y=5 hoặc x=-2;y=-5

Bình luận (0)
NN
16 tháng 7 2016 lúc 10:51

Câu 2:

Ta có \(\frac{x}{2}=\frac{y}{3}=\frac{x}{8}=\frac{y}{12}\)(1)

           \(\frac{y}{4}=\frac{z}{5}=\frac{y}{12}=\frac{z}{15}\)(2)

    Từ (1) và (2) suy ra:\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng dãy tỉ số bằng nhau ta có:

    \(\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\Rightarrow\begin{cases}\frac{x}{8}=2\\\frac{y}{12}=2\\\frac{z}{15}=2\end{cases}\)\(\Rightarrow\begin{cases}x=16\\y=24\\z=30\end{cases}\)

Vậy x=16;y=24;z=30

Bình luận (0)
NN
16 tháng 7 2016 lúc 11:00

Câu 3:

Vì xy=10 nên x,y khác 0

    Đặt \(\frac{x}{2}=k\)\(\Rightarrow\)x=2k(1)

           \(\frac{y}{5}=k\)\(\Rightarrow\)y=5k2)

Suy ra x.y=2k.5k=10k2

      Ta có:x.y=10

Do đó k=1;-1. Thay vào (1) và (2) ta có:

x=2k(Suy ra:x=2;-2)

y=5k(Suy ra:y=5;-5)

Vậy cặp (x;y)là:(2;5)(-2;-5)

         

 

 

Bình luận (1)
HT
Xem chi tiết
KB
14 tháng 12 2017 lúc 23:11

\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{4}=\frac{z}{5}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{x}{8}=\frac{y}{12}\\\frac{y}{12}=\frac{z}{15}\end{cases}}\)\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng dãy tỉ số bằng nhau:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\Rightarrow\hept{\begin{cases}x=8.2=16\\y=2.12=24\\z=15.2=30\end{cases}}\)

Bình luận (0)
NN
Xem chi tiết
DT
21 tháng 7 2015 lúc 11:46

\(dat:\frac{x}{2}=\frac{y}{5}=k\)

x=2k   ;  y=5k

x.y=10k2

10 = 10k2

k= 1

k  = +-1

Voi : k=1 = > x=1.2=2 ; y=5.1=5

voi : k=-1 => x=-1.2=-2 ; y=-1.5=-5

Bình luận (0)
DT
21 tháng 7 2015 lúc 11:44

\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{2}=\frac{4y}{12};\frac{3y}{12}=\frac{z}{5}\Rightarrow\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{z}{15}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Ap dung tinh chat day ti so bang nhau ta co : 

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

Suy ra  : \(\frac{x}{8}=2\Rightarrow x=16;\frac{y}{12}=2\Rightarrow y=2.12=24;\frac{z}{15}=2\Rightarrow z=2.15=30\)

nhieu qua lam ko het

Bình luận (0)
H24
Xem chi tiết
HL
4 tháng 10 2016 lúc 16:10

Bài 1:

 \(\frac{x}{2}\) = \(\frac{y}{3}\) , \(\frac{y}{4}\) = \(\frac{z}{5}\)  và x + y - z = 10

\(\frac{x}{2}\) = \(\frac{y}{3}\) --> \(\frac{x}{2.4}\) = \(\frac{y}{3.4}\) => \(\frac{x}{8}\) = \(\frac{y}{12}\) 

\(\frac{y}{4}\) = \(\frac{z}{5}\) --> \(\frac{y}{4.3}\) = \(\frac{z}{5.3}\) => \(\frac{y}{12}\) = \(\frac{z}{15}\) 

=> \(\frac{x}{8}=\frac{y}{12}\)  = \(\frac{z}{15}\)             

- Áp dụng tính chất dãy tỉ số bằng nhau ta có:

 \(\frac{x}{8}\) = \(\frac{y}{12}\) = \(\frac{z}{15}\) --> \(\frac{x+y-z}{8+12-15}_{ }\) = \(\frac{10}{5}\) = 2

=> \(\frac{x}{8}\) = 2 --> x = 16

      \(\frac{y}{12}=2\) --> y = 24

      \(\frac{z}{15}=2\) --> z = 30

Vậy x = 16 ; y = 24 ; z = 30

Bài 2: 

               \(\frac{x}{2}=\frac{y}{5}\) và x . y = 10

  Đặt \(\frac{x}{2}=\frac{y}{5}=k\) 

Ta có: x = 2 . k ; y = 5 . k

          x . y = 10 => 2k . 5k = 10

                          => 10 . \(^{k^2}\) = 10

                          => \(^{k^2}\) = 1 --> k = -1 hoặc k = 1

          k = 1 ta có \(\frac{x}{2}=\frac{y}{5}=1\) --> x = 2 ; y = 5

          k = -1 ta có \(\frac{x}{2}=\frac{y}{5}=-1\) --> x = -2 ; y = -5

 

                                                              

Bình luận (0)
TL
4 tháng 10 2016 lúc 15:45

Bài 1:

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\)\(\frac{y}{12}=\frac{z}{15}\)

=> \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

=>\(\begin{cases}x=16\\y=24\\z=30\end{cases}\)

Bài 2:

Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k;y=5k\)

Có: xy=10

\(\Leftrightarrow2k\cdot5k=10\)

\(\Leftrightarrow k^2=1\Leftrightarrow\left[\begin{array}{nghiempt}k=1\\k=-1\end{array}\right.\)

Với k=1 thì x=2 ; y=5

Với k=-1 thì x=-2 ; y=-5

 

Bình luận (0)
NM
4 tháng 10 2016 lúc 15:48

Bài 1 :

Ta có:

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

 

Nên x = 2.8 = 16

      y = 2.12 = 24

      z= 2. 15 = 30

Vậy ...

Bài 2 :

Đặt k =  . Ta có x = 2k, y = 5k

Từ xy=10. suy ra 2k.5k = 10 => 10 k^{2} = 10 => k^{2} = 1 => k = ± 1

Với k = 1 ta được  = 1 suy ra x = 2, y = 5

Với k = - 1 ta được  = -1  suy ra x = -2, y = -5

Bình luận (0)
SA
Xem chi tiết
H24
2 tháng 8 2017 lúc 22:12

Ta có x/8=y/12=z/15

Theo t/c của dãy tỉ số bằng nhau , ta có

x/8=y/12=z/15=x+y-z/8+12-15=10/5=2

x/2=2 , x=4

Bình luận (0)
BT
2 tháng 8 2017 lúc 22:11

Ta cóx/2=y/3;y/4=z/5

=>x/8=y/12=z/15

Áp dụng t/c của dãy tỉ số bằng nhau ta có:

x/8=y/12=z/15=x+y-z/8+12-15=10/5=2

=> x=16,y=24,z=30

Bình luận (0)
SA
2 tháng 8 2017 lúc 22:12

\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}=>\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{z}{15}\)

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

Nên x = 2.8 = 16

      y = 2.12 = 24

      z= 2. 15 = 30


 

Bình luận (0)
H24
Xem chi tiết
DT
1 tháng 7 2016 lúc 22:02

ta có : x/2=y/3

=>x/8=y/12(1)

lại có : y/4=z/5

=>y/12=z/15(2)

từ (1) và (2)

=>x/8=y/12=z/15

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

x/8=y/12=z/15=x+y+z/8+12-15=10/5=2

Khi đó : x/8=2<=>x=16

y/12=2<=>y=24

z/15=2<=>z=30

Vậy _______________

Bình luận (0)
PT
1 tháng 7 2016 lúc 22:06

\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}\)= 2

=> x = 2.8 = 16 ; y = 2.12 = 24 ; z = 2.15 = 30

Bình luận (0)
SM
Xem chi tiết
PM
8 tháng 7 2017 lúc 10:36

Bài I: Từ \(\frac{x}{2}\)=\(\frac{y}{3}\)\(\Rightarrow\)\(\frac{x}{2}\).\(\frac{1}{4}\)=\(\frac{y}{3}\).\(\frac{1}{4}\)\(\Rightarrow\)\(\frac{x}{8}\)=\(\frac{y}{12}\)(1)

Từ \(\frac{y}{4}\)=\(\frac{z}{5}\)\(\Rightarrow\)\(\frac{y}{4}\).\(\frac{1}{3}\)=\(\frac{z}{5}\).\(\frac{1}{3}\)\(\Rightarrow\)\(\frac{y}{12}\)=\(\frac{z}{15}\)(2)

Từ (1) và (2) suy ra \(\frac{x}{8}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

    \(\frac{x}{8}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)=\(\frac{x+y-z}{8+12-15}\)=\(\frac{10}{5}\)=2

Do đó:\(x=2.8=16\)

          \(y=12.2=24\)

          \(z=15.2=30\)

   Vậy \(x=16\);\(y=24\);\(z=30\)

Bài II: Đặt \(k=\frac{x}{2}\)=\(\frac{y}{5}\)

         \(\Rightarrow\)\(x=2.k\);\(y=5.k\)

\(x.y=10\)nên \(2k.5k=10\)

                         \(\Rightarrow\)\(10.k^2=10\)

                         \(\Rightarrow\)\(k^2=1\)

                        \(\Rightarrow\)\(k=1\)hoặc\(k=-1\)

 +) Với \(k=1\)thì \(x=2\);\(y=5\)

 +) Với \(k=-1\)thì \(x=-2\);\(y=-5\)

           Vậy \(x=2\);\(y=5\)hoặc \(x=-2\);\(y=-5\)

Bình luận (0)
DP
8 tháng 7 2017 lúc 10:37

\(\frac{x}{2}=\frac{y}{5}\)và  \(xy=10\)

Ta có : 

\(\frac{x}{2}=\frac{y}{5}\Leftrightarrow5x=2y\Leftrightarrow x=\frac{2y}{5}\). Thay vào biểu thức x . y = 10 . Ta được : 

\(\frac{2y}{5}.y=10\Leftrightarrow\frac{2y^2}{5}=10\Leftrightarrow2y^2=50\Leftrightarrow y^2=25\Leftrightarrow y=5;y=-5\)

Với  \(y=5\Rightarrow x=\frac{2.5}{5}=2\)

Với \(y=-5\Rightarrow x=\frac{2.\left(-5\right)}{5}=-2\)

Bình luận (0)