given three distinct real numbers x;y;z such as x^3+y^3+z^3= 3xyz evaluate P =2016 xyz/(x+y)(y+z)(z+x)
Given seven distinct positive naturel numbers that add up to 100,prove that some three of them addup to at least 50
(Cho bảy số tự nhiên phân biệt lớn hơn 0 và tổng của chúng bằng 100.Chứng minh rằng tồn tại ít nhất ba số trong bảy số trên có tổng ko nhỏ hơn 50)
every positive integer can be expressed as a sum of distinct of 2. note that 1 and 2 are power of 2. How many three - digit numbers are sums of exactly 9 distinct power of 2
(giúp mk với, mk cần gấp)
Given that A, B , C represent three distinct digits. If 7A90901 is larger than 79B9001, which is in turn larger than 798900C, what is the value of A x B x C?
Câu 1 The function mm is defined on the real numbers by m(k) = \dfrac{k+2}{k+8}m(k)= k+8 k+2 . What is the value of 10\times m(2)10×m(2)? Answer: Câu 2 The function ff is defined on the real numbers by f(x)= ax-3f(x)=ax−3. What is the value of a if f(3)=9f(3)=9? Answer: Câu 3 The function ff is defined on the real numbers by f(x)= 2x+a-3f(x)=2x+a−3. What is the value of a if f(-5)=11f(−5)=11? Answer: Câu 4 The function ff is defined on the real numbers by f(x) = 2 + x-x^2f(x)=2+x−x 2 . What is the value of f(-3)f(−3)? Answer: Câu 5 Given a real number aa and a function ff is defined on the real numbers by f(x)=-6\times|3x|-4f(x)=−6×∣3x∣−4. Compare: f(a)f(a) f(-a)f(−a) Câu 6 There are ordered pairs (x;y)(x;y) where xx and yy are integers such that \dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8} x 5 + 4 y = 8 1 Câu 7 Given a negative number kk and a function ff is defined on the real numbers by f(x)=\dfrac{6}{13}xf(x)= 13 6 x. Compare: f(k)f(k) f(-k)f(−k) Câu 8 Given a positive number kk and a function ff is defined on the real numbers by f(x)=\dfrac{-3}{4}x+4f(x)= 4 −3 x+4. Compare: f(k)f(k) f(-k)f(−k). Câu 9 A=(1+2+3+\ldots+90) \times(12 \times34-6 \times 68):(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6})=A=(1+2+3+…+90)×(12×34−6×68):( 3 1 + 4 1 + 5 1 + 6 1 )= Câu 10 Given that \dfrac{2x+y+z+t}{x}=\dfrac{x+2y+z+t}{y}=\dfrac{x+y+2z+t}{z}=\dfrac{x+y+z+2t}{t} x 2x+y+z+t = y x+2y+z+t = z x+y+2z+t = t x+y+z+2t . The negative value of \dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z} z+t x+y + t+x y+z + x+y z+t + y+z t+x is
Given five numbers, the average of two numbers is 17 and the average of the other three numbers is 12. The average of all these numbers is…
la 14 vi 17 x 2 = 34
12 x 3 = 36
36+34 = 70
70 : 5 = 14
1. Find x, given that:
\(\left(x+\frac{1}{3}\right)+\left(x+\frac{3}{40}\right)+\left(x+\frac{3}{88}\right)=\frac{31}{22}\)
2. The arithmatic average of three numbers is equal to 13.5 . The average of the first number and second number is 13, and the average of the second number and third number is 13.85 . Find the three numbers.
3. Compare A and B, given that:
A = 2.015 x 201.7
B = 20.16 x 20.16
Given three consecutive even natural numbers, which have the product of last two numbers is 80 greater than the product of first two numbers.
Find the largest number.
Answer: The largest number is ............. .
ở đây chỉ hỏi đáp toán,đố vui chứ ko cs hỏi tiếng anh ở đây !!!!!!!!
Given three consecutive even natural numbers, which have the product of last two numbers is 80 greater than the product of first two numbers.
Find the largest number.
(x + 1)(x + 2) - x(x + 1) = 80
(x + 1)(x + 2 - x) = 80
(x + 1)2 = 80
x + 1 = 40
=> x = 39
=> x + 2 = 39 + 2 = 41
Vậy số lớn nhất là 41.
ngồi phán đề nên ko biết dịch đúng ko, làm sai thì đừng chửi nhá
Đề bài : cho 3 số tự nhiên liên tiếp. Tích 2 số đầu cuối lớn hơn tích 2 số đầu là 80.
Gọi 3 số tự nhiên liên tiếp là a (a + 1) (a + 2).
Ta có (a + 1)(a + 2) = a(a + 1) + 80
=> (a + 1)(a + 2) - a(a + 1) - 80 = 0
=> a2 + 3a + 2 - a2 - a - 80 =0
=> 2a - 80 = 0 => a = 40
Vậy số lớn nhất là a + 2= 40 +2 =42
1.Given the quadrilateral ABCD with two diagonals perpendicular and AB = 8cm, BC = 7cm, AD = 4cm. Evaluate CD.
2.Given three consecutive even natural numbers, which have the product of last two numbers is 80 greater than the product of first two numbers.
Find the largest number.
Answer: The largest number is
1) sử dụng định lí pytago thì cd =1
2) đặt 3 số có dạng a; a+2, a+4 rồi khai triển ra
số lớn nhất là 22