Những câu hỏi liên quan
HT
Xem chi tiết
TW
Xem chi tiết
NL
6 tháng 10 2017 lúc 18:17

Theo đề bài : 2a =3b=5c và a+b+c=62

 Ta có  :\(\frac{2a}{30}\)\(\frac{3b}{30}\)=\(\frac{5c}{30}\)suy ra \(\frac{a}{15}\)=\(\frac{b}{10}\)=\(\frac{c}{6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau :

suy ra :\(\frac{a}{15}\)=\(\frac{b}{10}\)=\(\frac{c}{6}\)=\(\frac{a+b+c}{15+10+6}\)=\(\frac{62}{31}\)=2

suy ra :\(\frac{a}{15}\)= 2 suy ra a= 2 * 15=30

           \(\frac{b}{10}\)=2 suy ra b =2 * 10=20

            \(\frac{c}{6}\)=2 suy ra 2* 6= 12

Vậy a,b,c lần lượt là : 30 ,20, 12

Bình luận (0)
DW
6 tháng 10 2017 lúc 18:19

Ta co

\(2a=3b=5c\Rightarrow\frac{2a}{30}=\frac{3b}{30}=\frac{5c}{30}\)

\(\Rightarrow\frac{a}{15}=\frac{b}{10}=\frac{c}{6}\Rightarrow\frac{a+b+c}{15+10+6}\)

Vi a + b + c = 62\(\Rightarrow\frac{a+b+c}{15+10+6}=\frac{62}{31}=2\)

\(\Rightarrow\frac{a}{15}=2\Rightarrow a=30\)

\(\Rightarrow\frac{b}{10}=2\Rightarrow b=20\)

\(\Rightarrow\frac{c}{6}=2\Rightarrow c=12\)

Bình luận (0)
NG
Xem chi tiết
LT
Xem chi tiết
EC
13 tháng 8 2019 lúc 22:19

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\) => \(\frac{2a}{4}=\frac{3b}{9}=\frac{5c}{20}=\frac{2a+3b-5c}{4+9-20}=\frac{-28}{-7}=4\)

=> \(\hept{\begin{cases}\frac{a}{2}=4\\\frac{b}{3}=4\\\frac{c}{4}=4\end{cases}}\) => \(\hept{\begin{cases}a=4.2=8\\b=4.3=12\\c=4.4=16\end{cases}}\)

Vậy ...

Bình luận (0)
LC
13 tháng 8 2019 lúc 22:19

Vì \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)

\(\Rightarrow\frac{2a}{4}=\frac{3b}{9}=\frac{5c}{20}=\frac{2a+3b-5c}{4+9-20}=\frac{-28}{-7}=4\)( áp dụng ...)

Làm tính nốt

Bình luận (0)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{2a}{4}=\frac{3b}{9}=\frac{5c}{20}=\frac{2a+3b-5c}{4+9-20}=\frac{-28}{-7}=4\)

Vậy\(\hept{\begin{cases}a=4\cdot2=8\\b=4\cdot3=12\\c=4\cdot4=16\end{cases}}\)

Bình luận (0)
NG
Xem chi tiết
NA
Xem chi tiết
ND
2 tháng 10 2020 lúc 12:34

Bài 1:

a) \(\frac{x-1}{0-2}=\frac{1,2}{1,5}\)

\(\Leftrightarrow\frac{1-x}{2}=\frac{4}{5}\)

\(\Leftrightarrow5-5x=8\)

\(\Leftrightarrow x=-\frac{3}{5}\)

b) Ta có: \(x=\frac{y}{2}=\frac{z}{3}=\frac{4x-3y+2z}{4-6+6}=\frac{16}{4}=4\)

\(\Rightarrow\hept{\begin{cases}x=4\\y=8\\z=12\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
ND
2 tháng 10 2020 lúc 12:38

Bài 1:

c) \(2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\Leftrightarrow\frac{x}{21}=\frac{y}{14}\)

\(5y=7z\Leftrightarrow\frac{y}{7}=\frac{z}{5}\Leftrightarrow\frac{y}{14}=\frac{z}{10}\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)

\(\Rightarrow\hept{\begin{cases}x=42\\y=28\\z=20\end{cases}}\)

d) \(x:y:z=3:5:2\Leftrightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{2}=\frac{5x-7y+5z}{15-35+10}=\frac{124}{-10}\)

\(\Rightarrow\hept{\begin{cases}x=-\frac{186}{5}\\y=-62\\z=-\frac{124}{5}\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
ND
2 tháng 10 2020 lúc 12:41

Bài 1:

e) \(\frac{x}{3}=\frac{y}{5}=k\left(k\inℝ\right)\)

\(\Rightarrow\hept{\begin{cases}x=3k\\y=5k\end{cases}}\)

Ta có: \(x\cdot y=240\Leftrightarrow15k^2=240\)

\(\Leftrightarrow k^2=16\Rightarrow k=\pm4\)

=> \(\hept{\begin{cases}x=\pm12\\y=\pm20\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
NG
Xem chi tiết
NM
Xem chi tiết
CD
11 tháng 8 2016 lúc 11:10

Theo đề bài, ta có: 

0,2a=0,3b=0,4c và 2a+3b-5c=-1,8

\(\Rightarrow\frac{a}{0,2}=\frac{b}{0,3}=\frac{c}{0,4}\) và 2a+3b-5c=-1,8

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{a}{0,2}=\frac{b}{0,3}=\frac{c}{0,4}=\frac{2a+3b-5c}{2.0,2+3.0,3-5.0,4}=\frac{\left(-1,8\right)}{\left(-0,7\right)}=\frac{18}{7}\)

\(\frac{a}{0,2}=\frac{18}{7}.0,2=\frac{18}{35}\)\(\frac{b}{0,3}=\frac{18}{7}.0,3=\frac{27}{35}\)\(\frac{c}{0,4}=\frac{18}{7}.0,4=\frac{36}{35}\)

Vậy \(x=\frac{18}{35},y=\frac{27}{35},z=\frac{36}{35}\)

T mk nhé bạn ^...^ ^_^

Bình luận (0)
VT
11 tháng 8 2016 lúc 10:58

Ta có : \(0,2a=0,3b=\frac{a}{0,3}=\frac{b}{0,2}\)

            \(0,3b=0,4c=\frac{b}{0,4}=\frac{c}{0,3}\)

Quy đòng : \(\frac{a}{0,3}=\frac{b}{0,2};\frac{b}{0,4}=\frac{c}{0,3};\frac{a}{0,12}=\frac{b}{0,08}=\frac{c}{0,06}\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

Làm tiếp đi 

Bình luận (0)
NM
11 tháng 8 2016 lúc 14:20

Mình hiểu rồi ! Cảm ơn nhé!

Bình luận (0)
YK
Xem chi tiết
H24
2 tháng 10 2020 lúc 19:03

            Bài làm :

Sửa đề bài : 5a+3b / 5a-3b = 5c+3d/5c-3d

\(\text{Đặt : }\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\) 

Ta có :

\(\hept{\begin{cases}\frac{5a+3b}{5a-3b}=\frac{5bk+3b}{5bk-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\\\frac{5c+3d}{5c-3d}=\frac{5dk+3d}{5dk-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\end{cases}}\)

\(\Rightarrow\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)

=> Điều phải chứng minh

Bình luận (0)
 Khách vãng lai đã xóa