Những câu hỏi liên quan
H24
Xem chi tiết
2T
17 tháng 8 2019 lúc 14:28

a) A có nghĩa\(\Leftrightarrow x-y\ne0\Leftrightarrow x\ne y\)

b) \(A=\frac{x+y-2\sqrt{xy}}{x-y}=\frac{\left(\sqrt{x-\sqrt{y}}\right)^2}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}=\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)

Bình luận (0)
H24
Xem chi tiết
NT
19 tháng 8 2023 lúc 0:13

a: \(A=\left(2\sqrt{5}-3\sqrt{5}+3\sqrt{5}\right)\cdot\sqrt{5}=2\sqrt{5}\cdot\sqrt{5}=10\)

\(B=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)

\(=\sqrt{x}-1+\sqrt{x}=2\sqrt{x}-1\)

b: A=2B

=>\(10=4\sqrt{x}-2\)

=>\(4\sqrt{x}=12\)

=>x=9(nhận)

Bình luận (0)
NH
Xem chi tiết
NT
23 tháng 1 2024 lúc 14:45

a:

ĐKXĐ: x<>2

|2x-3|=1

=>\(\left[{}\begin{matrix}2x-3=1\\2x-3=-1\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=2\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)

Thay x=1 vào A, ta được:

\(A=\dfrac{1+1^2}{2-1}=\dfrac{2}{1}=2\)

b: ĐKXĐ: \(x\notin\left\{-1;2\right\}\)

\(B=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{x^2-x-2}\)

\(=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{\left(x-2\right)\left(x+1\right)}\)

\(=\dfrac{2x\left(x-2\right)+3\left(x+1\right)-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)

\(=\dfrac{2x^2-4x+3x+3-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)

\(=\dfrac{-x+2}{\left(x+1\right)\left(x-2\right)}=-\dfrac{1}{x+1}\)

c: \(P=A\cdot B=\dfrac{-1}{x+1}\cdot\dfrac{x\left(x+1\right)}{2-x}=\dfrac{x}{x-2}\)

\(=\dfrac{x-2+2}{x-2}=1+\dfrac{2}{x-2}\)

Để P lớn nhất thì \(\dfrac{2}{x-2}\) max

=>x-2=1

=>x=3(nhận)

Bình luận (0)
LL
Xem chi tiết
TV
Xem chi tiết
HD
27 tháng 3 2017 lúc 19:32

Mọi người tk mình đi mình đang bị âm nè!!!!!!

Ai tk mình mình tk lại nha !!!

Bình luận (0)
H24
Xem chi tiết
TK
29 tháng 12 2017 lúc 16:20

a. ĐKXĐ : x>1.

b. \(A=\left(\dfrac{4}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{1}{\sqrt{x}-1}=\left[\dfrac{4}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right].\left(\sqrt{x}-1\right)=\dfrac{4+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\left(\sqrt{x}-1\right)=\dfrac{4+x}{\sqrt{x}}\)

c. Thay \(x=4-2\sqrt{3}\) vào A, ta có:

\(A=\dfrac{4+4-2\sqrt{3}}{\sqrt{4-2\sqrt{3}}}=\dfrac{8-2\sqrt{3}}{\sqrt{\left(\sqrt{3}-1\right)^2}}=\dfrac{8-2\sqrt{3}}{\sqrt{3}-1}=\dfrac{\left(8-2\sqrt{3}\right)\left(\sqrt{3}+1\right)}{3-1}=\dfrac{8\sqrt{3}+8-6-2\sqrt{3}}{2}=\dfrac{2+6\sqrt{3}}{2}=\dfrac{2\left(1+3\sqrt{3}\right)}{2}=1+3\sqrt{3}\)

Vậy giá trị của A tại \(x=4-2\sqrt{3}\)\(1+3\sqrt{3}\).

Bình luận (0)
PA
Xem chi tiết
PA
17 tháng 12 2017 lúc 12:38

giup mik vs cac bn.

Bình luận (0)
MN
5 tháng 4 2020 lúc 14:38

Đề bài sai rồi bạn ! Mình sửa :

a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne\pm1\end{cases}}\)

b) \(P=\left(\frac{x-1}{x+1}-\frac{x+1}{x-1}\right):\frac{2x}{3x-3}\)

\(\Leftrightarrow P=\frac{\left(x-1\right)^2-\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}\cdot\frac{3\left(x-1\right)}{2x}\)

\(\Leftrightarrow P=\frac{x^2-2x+1-x^2-2x-1}{\left(x-1\right)\left(x+1\right)}\cdot\frac{3\left(x-1\right)}{2x}\)

\(\Leftrightarrow P=\frac{-4x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{3\left(x-1\right)}{2x}\)

\(\Leftrightarrow P=\frac{-6}{x+1}\)

c) Để P nhận giá trị nguyên

\(\Leftrightarrow\frac{-6}{x+1}\inℤ\)

\(\Leftrightarrow x+1\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

\(\Leftrightarrow x\in\left\{-2;0;-3;1;-4;2;-7;5\right\}\)

Ta loại các giá trị ktm

\(\Leftrightarrow x\in\left\{-2;-3;-4;2;-7;5\right\}\)

Vậy để \(P\inℤ\Leftrightarrow x\in\left\{-2;-3;-4;2;-7;5\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
30 tháng 12 2022 lúc 18:51

 `a, x^2 +x` \(\ne\) `0` \(\Leftrightarrow x\left(x+1\right)\ne0\)

                          \(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x+1\ne0\end{matrix}\right.\)

                         \(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne-1\end{matrix}\right.\)

`b, A=(x+1)/(x^2+x) =(x+1)/(x(x+1))=1/x`

Bình luận (0)
H24
30 tháng 12 2022 lúc 18:51

\(A=\dfrac{x+1}{x^2+x}\)

\(a,\) Điều kiện xác định: \(x^2+x\ne0\Leftrightarrow x\left(x+1\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne-1\end{matrix}\right.\)

\(b,A=\dfrac{x+1}{x^2+x}=\dfrac{x+1}{x\left(x+1\right)}=\dfrac{1}{x}\)

Bình luận (0)
LL
Xem chi tiết