Cho A=(-7)+(-7)2+(-7)3+...+(-7)2007
Chứng minh rằng A chia hết cho 43
Chúng minh rằng : A = (-7)+(-7)^2+...+(-7)^2006+(-7)^2007 chia hết cho 43
a) Tính tổng: A=(-7)+(-7)2+...+(-7)2006+(-7)2007. CMR: A chia hết cho 43.
b) Chứng minh rằng điều kiện cần và đủ để m2+m.n+n2 chia hết cho 9 là: m, n chia hết cho 3.
\(A=\left(-7\right)+\left(-7\right)^2+......+\left(-7\right)^{2006}+\left(-7\right)^{2007}\)
\(=\left[\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3\right]+\left[\left(-7\right)^4+\left(-7\right)^5+\left(-7\right)^6\right]+.......\) \(+\left[\left(-7\right)^{2005}+\left(-7\right)^{2006}+\left(-7\right)^{2007}\right]\)
\(=\left(-7\right)\left[1+\left(-7\right)+\left(-7\right)^2\right]+......+\left(-7\right)^{2005}\left[1+\left(-7\right)+\left(-7\right)^2\right]\)
\(=\left(-7\right).43+\left(-7\right)^3.43+......+\left(-7\right)^{2005}.43\)
\(=43\left[\left(-7\right)+\left(-7\right)^3+.....+\left(-7\right)^{2005}\right]\).
Suy ra A chia hết cho 43.
A=(-7+-7^2+-7^3)+.....+(-7^2005+-7^2006+-7^2007)
A=-7(1+-7+-7^2)+.....+-7^2005(1+-7+-7^2)
A=-7.43+....+-7^2005.43\(⋮\)43\(\Rightarrow\)dpcm
b)\(m^2-2mn+n^2+3mn\)
=\(\left(m-n\right)^2+3mn⋮9\)
=\(3mn⋮3\)
\(\Rightarrow\left(m-n\right)^2⋮3\)
\(\Rightarrow\left(m-n\right)^2⋮9\)
\(\Rightarrow3mn⋮9\)
\(\Rightarrow mn⋮3\)
\(\Rightarrow\)m hoạc n\(\)\(⋮\)3
Giả sử m\(⋮\)3,m-n\(⋮\)
\(\Rightarrow\)n\(⋮3\)
\(\Rightarrow\)dpcm
Tính tổng A=\(\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3+...+\left(-7\right)^{2007}\) Chứng minh rằng A chia hết cho 43
Ta thấy \(A=\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3+...+\left(-7\right)^{2007}\)
\(A=\left[\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3\right]+...+\left[\left(-7\right)^{2005}+\left(-7\right)^{2006}+\left(-7\right)^{2007}\right]\)
\(A=-7.\left[1+\left(-7\right)+49\right]+\left(-7\right)^4.\left[1+\left(-7\right)+49\right]+...+\left(-7\right)^{2005}.\left[1+\left(-7\right)+49\right]\)
\(A=-7.43+\left(-7\right)^4.43+...+\left(-7\right)^{2005}.43\)
\(A=43\left[\left(-7\right)+\left(-7\right)^4+...+\left(-7\right)^{2005}\right]⋮43\)
Vậy A chia hết cho 43.
tổng A luôn chia hết nha bạn
A= -7+(-7)^2+(-7)^3+...+(-7)^2007.Chứng minh A chia hết cho 43
Ta có : A = -7 + (-7)2 + (-7)3 + ....... + (-7)2007
=> -7A = (-7)2 + (-7)3 + ....... + (-7)2008
=> -7A - A = (-7)2008 - (-7)
=> -8A = (-7)2008 + 7
=> A = .........................
chứng minh A=-7+(-7)^2+(-7)^3+...+(-7)^2015+(-7)^2016.Chứng minh A chia hết cho 43
Chứng minh rằng
a) 7^206 - 7^205 + 7^204 chia hết cho 43
b)32^17 + 16^21 - 2^82 chia hết cho 44
a) Ta có:
\(7^{2006}-7^{2005}+7^{2004}\)
\(=7^{2004}\left(7^2-7+1\right)\)
\(=7^{2004}\times43\)
\(\Rightarrow7^{2006}-7^{2005}+7^{2004}\)chia hết cho 43 (vì có chứa thừa số 43)
b) Ta có:
\(32^{17}+16^{21}-2^{82}\)
\(=\left(2^5\right)^{17}+\left(2^4\right)^{21}-2^{82}\)
\(=2^{85}+2^{84}-2^{82}\)
\(=2^{82}\left(2^3+2^2-1\right)=2^{82}\times11=2^{80}\times2^2\times11\)
\(=2^{80}\times44\)
\(\Rightarrow32^{17}+16^{21}-2^{82}\)chia hết cho 44 (vì có chứa thừa số 44)
Có tổng \(A=\left(-7\right)+\left(-7^2\right)+\left(-7^3\right)+...+\left(-7^{2007}\right)\)Chứng minh rằng A chia hết cho 43
Chứng minh rằng:
7) ( 43^43- 17^17) chia hết cho 10
8) ( 7^ 1000- 3^1000) chia hết cho 10
Bài 7 :43^1 =43. tận cùng là số 3
43^2= 1849 tận cùng là số 9
43^3 =79507 tận cùng là số 7
43^4 =3418801 tận cùng là số 1
43^5 = 147008443 tiếp tục tận cùng là số 3
vậy quy luật của nó cứ lặp đi lặp lại theo dãy 4 số 3 - 9 - 7 - 1
ta có 43 chia 4 dư 3. vậy tận cùng của số 43^43 là 7
tương tự ta có số tận cùng của 17^17 là 7.
vậy thì 43^43 - 17^17 ra số có tận cùng là 0. mà số có tận cùng là 0 thì luôn chia hết cho 10 (điều phải chứng minh)
Bài 8 : \(7^{1000}=\left(7^2\right)^{500}=49^{500}\)
\(3^{1000}=\left(3^2\right)^{500}=9^{500}\)
Ta có : lũy thừa tận cùng là 9 khi nâng bậc lũy thừa chẵn nên tận cùng là 1.
=> \(49^{500}\) tận cùng là 1
=> \(9^{500}\) tận cùng là 1
=> (...1) - (....1) = (....0)
Vì tận cùng là 0 nên chia hết cho 10
Vậy 71000 - 31000 chia hết cho 10 (đpcm)
Bài 7 :43^1 =43. tận cùng là số 3
43^2= 1849 tận cùng là số 9
43^3 =79507 tận cùng là số 7
43^4 =3418801 tận cùng là số 1
43^5 = 147008443 tiếp tục tận cùng là số 3
vậy quy luật của nó cứ lặp đi lặp lại theo dãy 4 số 3 - 9 - 7 - 1
ta có 43 chia 4 dư 3. vậy tận cùng của số 43^43 là 7
tương tự ta có số tận cùng của 17^17 là 7.
vậy thì 43^43 - 17^17 ra số có tận cùng là 0. mà số có tận cùng là 0 thì luôn chia hết cho 10 (điều phải chứng minh)
Bài 8 : 71000=(72)500=4950071000=(72)500=49500
31000=(32)500=950031000=(32)500=9500
Ta có : lũy thừa tận cùng là 9 khi nâng bậc lũy thừa chẵn nên tận cùng là 1.
=> 4950049500 tận cùng là 1
=> 95009500 tận cùng là 1
=> (...1) - (....1) = (....0)
Vì tận cùng là 0 nên chia hết cho 10
Vậy 71000 - 31000 chia hết cho 10 (đpcm)
Bài 1: Chứng minh rằng tổng sau chia hết cho 7: A= 2^1 + 2^2 + 2^3 + 2^4 + ... + 2^59 + 2^60
Bài 2: a) Cho A= 999993^1999 - 555557^1997. Chứng minh rằng A chia hết cho 5
b) Chứng tỏ rằng: 1/41 + 1/42 + 1/43 + ... + 1/79 + 1/80 > 7/12
Bài 3: Chứng tỏ rằng: 2x + 3y chia hết cho 17 <=> 9x + 5y chia hết cho 17
A= (21+22+23)+(24+25+26)+...+(258+259+260)
=20(21+22+23)+23(21+22+23)+...+257(21+22+23)
=(21+22+23)(20+23+...+257)
= 14(20+23+...+257) chia hết cho 7
Vậy A chia hết cho 7
gọi 1/41+1/42+1/43+...+1/80=S
ta có :
S>1/60+1/60+1/60+...+1/60
S>1/60 x 40
S>8/12>7/12
Vậy S>7/12
cho mình hỏi nhờ cũng cái đề bài này nhưng chia hết cho 37 làm thế nào