Những câu hỏi liên quan
LT
Xem chi tiết
NA
22 tháng 9 2019 lúc 20:05

\(x^2y^2+x^2-xy+6x+2016\)

\(=\left[\left(xy\right)^2-xy+\frac{1}{4}\right]+\left(x^2+6x+9\right)+2006,75\)

\(=\left(xy-\frac{1}{2}\right)^2+\left(x+3\right)^2+2006,75\ge2006,75\forall x;y\)

Dấu"=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(xy-\frac{1}{2}\right)^2=0\\\left(x+3\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}xy-\frac{1}{2}=0\\x=-3\end{cases}\Rightarrow}y=\frac{-1}{6}}\)

Vậy GTNN của bt = 2006,75 tại x=-3 ; y=\(\frac{-1}{6}\)

Bình luận (0)
NT
Xem chi tiết
CM
23 tháng 5 2017 lúc 19:25

kkkkkkkkkkkkkkkkkk

Bình luận (0)
CM
23 tháng 5 2017 lúc 19:27

wopdjoqwedi

Bình luận (0)
TM
23 tháng 5 2017 lúc 23:35

Ta có:

\(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)

Vì \(\left|x-2016\right|\ge0\Rightarrow\left|x-2016\right|+2018\ge2018\Rightarrow\frac{1}{\left|x-2016\right|+2018}\le\frac{1}{2018}\)

=>\(A=1-\frac{1}{\left|x-2016\right|+2018}\ge\frac{2017}{2018}\)

=>\(A_{min}=\frac{2017}{2018}\)<=>|x-2016|=0<=>x-2016=0<=>x=2016

Bình luận (0)
HK
Xem chi tiết
TN
26 tháng 1 2016 lúc 9:44

b)\(\sqrt{2^3+1}\) theo mình phần b như vậy ko bít đúng ko

Bình luận (0)
TN
26 tháng 1 2016 lúc 9:45

a)=**** 100%

b)\(\sqrt{2^3+1}\) phần b ko bít đúng ko nhưng phần a đúng ko 100%

Bình luận (0)
TN
26 tháng 1 2016 lúc 9:46

a)=1

b)\(\sqrt{2^3+1}\) phần b ko bít đúng ko nhưng phần a đúng ko 100%

Bình luận (0)
NT
Xem chi tiết
VC
25 tháng 12 2017 lúc 20:12

ta có A=\(\left|2016-x\right|+\left|x-1\right|\ge\left|2016-x+x-1\right|=2015\)

=>A >=2015

dấu = xảy ra <=> (2016-x)(x-1)>=0 <=>(x-2016)(x-1)<=0 <=>2016>=x>=1

Bình luận (0)
HP
Xem chi tiết
RL
27 tháng 10 2015 lúc 21:01

B=|x-2015|+|x-2016| <=>|x-2015|+|2016-x| > |x-2015+2016-x|=|1|=1

vây Bmin=1

Bình luận (0)
DT
Xem chi tiết
LC
13 tháng 10 2019 lúc 22:59

\(A=x^2+2y^2+2xy+2x-4y+2016\)

\(=x^2+y^2+y^2+2xy+2x+2y-6y+2016\)

\(=\left(x^2+2xy+y^2\right)+\left(y^2-6y+9\right)+\left(2x+2y\right)+2007\)

\(=\left(x+y\right)^2+\left(y-3\right)^2+2\left(x+y\right)+2007\)

\(=\left(x+y+1\right)^2+\left(y-3\right)^2+2006\)

Vì \(\hept{\begin{cases}\left(x+y+1\right)^2\ge0;\forall x,y\\\left(y-3\right)^2\ge0;\forall x,y\end{cases}}\)\(\Rightarrow\left(x+y+1\right)^2+\left(y-3\right)^2\ge0;\forall x,y\)

\(\Rightarrow\left(x+y+1\right)^2+\left(y-3\right)^2+2006\ge0+2006;\forall x,y\)

Hay \(A\ge2006;\forall x,y\)

Dấu"=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(y-3\right)^2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)

Vậy \(A_{min}=2006\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)

Bình luận (0)
LC
13 tháng 10 2019 lúc 23:07

Mình làm có gì sai hả @@ 

Bình luận (0)
LM
17 tháng 10 2019 lúc 20:05

do em điểm cao qua mà

tích cho a đi

Bình luận (0)
LT
Xem chi tiết
ST
Xem chi tiết
PQ
20 tháng 12 2018 lúc 21:32

ĐKXĐ : \(x\ne0\)

\(A=x^2-3x+\frac{4}{x}+2016=\left(x^2-4x+4\right)+\left(x+\frac{4}{x}\right)+2012\)

\(A=\left(x-2\right)^2+\left(x+\frac{4}{x}\right)+2012\ge0+2\sqrt{x.\frac{4}{x}}+2012=2016\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-2\right)^2=0\\x=\frac{4}{x}\end{cases}\Leftrightarrow x=2}\)

... 

Bình luận (0)
PK
Xem chi tiết
PH
15 tháng 4 2016 lúc 19:48

Ta có : A = l2014 - x l + l 2015 - x l + l2016 - x l 
        => A = l2014 - x l + l2015 - x l + l x-2016 l   (Với x>2016 )
         => A >= l 2014 -x + x- 2016 l + l2015 -x l
        => A >= l2014-2016l + l2015-x l
       => A >= l -2 l + l2015 - x l
        => A >= 2 + l2015 - x l 
      Vì l2015 - x l >=0 Nên <=> A >= 2 +0
                                         => A >=2 
  Vậy Min A =2 <=> l2015 - x l = 0 
                         => 2015 - x= 0   => x= 2015-0 =2015
Vậy tại x= 2015 thì GTNN của A =2 

Bình luận (0)
PK
15 tháng 4 2016 lúc 19:53

sai rồi

Bình luận (0)