phân tích đa thức thành nhân tử
a, 81x2-6xyz-9y2-z2
b, x2-x-12
c, 81x2+4
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Phân tích các đa thức thành nhân tử
a)6x3y2.(2-x)+9x2y2.(x-2)
b)x2-4x+4y-y2
c)81x2+6yz-9y2-z2
\(a.6x^3y^2.\left(2-x\right)+9x^2y^2.\left(x-2\right)\\ =6x^3y^2.\left(2-x\right)-9x^2y^2.\left(2-x\right)\\ =3x^2y^2\left(2-x\right)\left(2x-3\right)\)
Lời giải:
a.
$=6x^3y^2(2-x)-9x^2y^2(2-x)$
$=(2-x)(6x^3y^2-9x^2y^2)$
$=(2-x).3x^2y^2(2x-3)=3x^2y^2(2-x)(2x-3)$
b.
$=(x^2-y^2)-(4x-4y)=(x-y)(x+y)-4(x-y)$
$=(x-y)(x+y-4)$
c.
$81x^2-(9y^2-6yz+z^2)$
$=(9x)^2-(3y-z)^2=(9x-3y+z)(9x+3y-z)$
Phân tích đa thức thành nhân tử
A. X2 - 9y2
B. 7x ( x-y ) +3x -3y
a. \(x^2\) - 9y2
= (\(x\))2 - (3y)2
= (\(x\) - 3y)(\(x\) + 3y)
x2 - 9y2 = x2 - (3y)2= (x - 3y)(x + 3y)
B. 7\(x\).(\(x\) - y) + 3\(x\) - 3y
= 7\(x\).(\(x\) -y) + 3.(\(x\) - y)
= (\(x\) - y)(7\(x\) + 3)
bài 2 phân tích đa thức thành nhân tử
a x2 - 2x -9y2 - 9y
b x2y -x3 -10y + 10x
c x2 ( x-2 ) + 49 ( 2-x)
sossss
b) \(x^2y-x^3-10y+10x\)
\(=x^2\left(y-x\right)-10\left(y-x\right)\)
\(=\left(y-x\right)\left(x^2-10\right)\)
c) \(x^2\left(x-2\right)+49\left(2-x\right)\)
\(=\left(x-2\right)\left(x^2-49\right)\)
\(=\left(x-2\right)\left(x-7\right)\left(x+7\right)\)
phân tích đa thức thành nhân tử :
a) x2 - 6x +5
b) x2 - x - 12
c) x2 + 8x +15
d) 2x2 - 5x -12
e) x2 - 13x + 36
a: \(x^2-6x+5=\left(x-5\right)\left(x-1\right)\)
b: \(x^2-x-12=\left(x-4\right)\left(x+3\right)\)
c: \(x^2+8x+15=\left(x+5\right)\left(x+3\right)\)
d: \(2x^2-5x-12=\left(x-4\right)\left(2x+3\right)\)
e: \(x^2-13x+36=\left(x-9\right)\left(x-4\right)\)
Câu 1. (1,5 điểm) Phân tích các đa thức sau thành nhân tử.
a) x2 -5x
b) (x + 3y ) 2 - 9y2
c) x2 + xy - 3x -3y
a) \(=x\left(x-5\right)\)
b) \(=\left(x+3y-3y\right)\left(x+3y+3y\right)=x\left(x+6y\right)\)
c) \(=x\left(x+y\right)-3\left(x+y\right)=\left(x+y\right)\left(x-3\right)\)
phân tích các đa thức thành nhân tử
a) x2-2xy +y2-z2
b) x3+y3+2x2-2xy+2y2
\(a,x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right).\left(x-y+z\right)\)
\(b,x^3+y^3+2x^2-2xy+2y^2=\left(x^3+y^3\right)+2\left(x^2-xy+y^2\right)=\left(x+y\right).\left(x^2-2xy+y^2\right)+2.\left(x^2-xy+y^2\right)=\left(x^2-xy+y^2\right).\left(x+y+2\right)\)
phân tích các đa thức sau thành nhân tử:
a, A= x2 - 6x + 9 - 9y2
b, B= x3 - 3x2 + 3x - 1 + 2(x2 - 1)
a) \(A=x^2-6x+9-9y^2\)
\(=\left(x-3\right)^2-\left(3y\right)^2\)
\(=\left(x-3-3y\right)\left(x-3+3y\right)\)
b) \(B=x^3-3x^2+3x-1+2\left(x^2-1\right)\)
\(=\left(x-1\right)^3+\left(2x+2\right)\left(x-1\right)\)
\(=\left(x-1\right)\left[\left(x-1\right)^2+2x+2\right]\)
\(=\left(x-1\right).\left(x^2+3\right)\)
a, \(A=\left(x-3\right)^2-9y^2=\left(x-3-3y\right)\left(x-3+3y\right)\)
b, \(B=\left(x-1\right)^3+2\left(x-1\right)\left(x+1\right)=\left(x-1\right)\left[\left(x-1\right)^2+2\left(x+1\right)\right]\)
\(=\left(x-1\right)\left(x^2-2x+1+2x+2\right)=\left(x-1\right)\left(x^2+3\right)\)
phân tích các đa thức sau thành nhân tử:
a, A= x2 - 6x + 9 - 9y2
b, B= x3 - 3x2 + 3x - 1 + 2(x2 - 1)
Câu 1.(1,5 điểm) Phân tích các đa thức sau thành nhân tử:
a) 15x – 5xy b) (x2 + 1)2 – 4x2 c) x2 – 10x – 9y2 + 25
\(a,15x-5xy\\ =5x\left(3-y\right)\\ b,\left(x^2+1\right)^2-4x^2\\ =\left(x^2-x+1\right)\left(x^2+x+1\right)\\ c,x^2-10x-9y^2+25\\ =\left(x-5\right)^2-9y^2\\ =\left(x-9y-5\right)\left(x+9y-5\right)\)
a) 5x(3 - y)
b) (x2 - x + 1)(x2 + x + 1)
c) (x - 9y - 5)(x + 9y - 5)
trả lời cho nguyễn hồng hạnh pro
x2 + -4 = 0
Sắp xếp lại các điều khoản:
-4 + 81x2 = 0
Giải quyết
-4 + 81x2 = 0
Giải quyết cho biến 'x'.
Di chuyển tất cả các điều khoản có chứa x sang bên trái, tất cả các điều khoản khác về bên phải.
Thêm '4' vào mỗi bên của phương trình.
-4 + 4 + 81x2 = 0 + 4
Kết hợp các điều khoản như: -4 + 4 = 0
0 + 81x2 = 0 + 4
81x2 = 0 + 4
Kết hợp như các điều khoản: 0 + 4 = 4
81x2 = 4
Chia mỗi bên '81'.
x2 = 0,04938271605
Đơn giản hóa
x2 = 0,04938271605
Lấy căn bậc hai của mỗi bên:
x = {-,222222222, 0,222222222}