Những câu hỏi liên quan
KV
Xem chi tiết
NT
27 tháng 5 2022 lúc 13:10

Bài 2: 

Vì n là số tự nhiên lẻ nên \(n=2k+1\left(k\in N\right)\)

1: 

\(n^2+4n+3\)

\(=n^2+3n+n+3\)

\(=\left(n+3\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right)\left(2k+2\right)\)

\(=4\left(k+1\right)\left(k+2\right)\)

Vì k+1;k+2 là hai số nguyên liên tiếp 

nên \(\left(k+1\right)\left(k+2\right)⋮2\)

=>\(4\left(k+1\right)\left(k+2\right)⋮8\)

hay \(n^2+4n+3⋮8\)

2: \(n^3+3n^2-n-3\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)

\(=2k\left(2k+2\right)\left(2k+4\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì k;k+1;k+2 là ba số nguyên liên tiếp

nên \(k\left(k+1\right)\left(k+2\right)⋮3!\)

=>\(k\left(k+1\right)\left(k+2\right)⋮6\)

=>\(8k\left(k+1\right)\left(k+2\right)⋮48\)

hay \(n^3+3n^2-n-3⋮48\)

Bình luận (0)
NL
Xem chi tiết
LN
Xem chi tiết
NT
Xem chi tiết
PD
30 tháng 6 2018 lúc 16:42

a,\(10^n+18n-1\)

\(=99...9+18n\)(n-1 chữ số 9)

Mà \(99..9⋮9;18n⋮9\)lại có \(999..9⋮3;18n⋮3\)

\(\Rightarrow999..9+18n⋮\left(3.9\right)\)

\(\Rightarrow10^n+18n-1⋮27\)

Bình luận (0)
AH
13 tháng 8 2018 lúc 9:34

mình biết nội quy rồi nên đưng đăng nội quy

ai chơi bang bang 2 kết bạn với mình

mình có nick có 54k vàng đang góp mua pika 

ai kết bạn mình cho

Bình luận (0)
LD
18 tháng 8 2018 lúc 11:09

Phạm Tuấn Đạt óc....  . 10n-1 =99..9 (có n chữ số)

có n-1 tức là n=2 thì 102-1 có 1 chữ số

ahihi

Bình luận (0)
NC
Xem chi tiết
NT
23 tháng 7 2020 lúc 21:04

a) Áp dụng định lí nhỏ Fermat vào biểu thức \(n^5-n\), ta được:

\(n^5-n⋮5\)(vì 5 là số nguyên tố)

Ta có: \(n^5-n\)

\(=n\left(n^4-1\right)\)

\(=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n^2+1\right)\)

Vì n-1 và n là hai số nguyên liên tiếp nên \(\left(n-1\right)\cdot n⋮2\)

\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\)

Vì n-1; n và n+1 là ba số nguyên liên tiếp nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮3\)

\(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\)(cmt)

và ƯCLN(2;3)=1

nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\cdot3\)

\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮6\)

\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n^2+1\right)⋮6\)

hay \(n^5-n⋮6\)

\(n^5-n⋮5\)(cmt)

và ƯCLN(6;5)=1

nên \(n^5-n⋮6\cdot5\)

hay \(n^5-n⋮30\)(đpcm)

Bình luận (0)
NH
Xem chi tiết
ZR
31 tháng 1 2016 lúc 19:45

10^n - 9n - 1 chia hết cho 27 (*) 

Sử dụng phương pháp quy nạp. 

- Với n = 1, ta có 10^1 - 9x1 -1 = 0, chia hết cho 27. 

- Giả sử (*) đúng với n = k (thuộc N*), tức là: 
10^k - 9k - 1 chia hết cho 27 

- Ta cần chứng minh (*) cũng đúng với cả n = k + 1, tức là: 
10^(k+1) - 9(k+1) - 1 chia hết cho 27. 

Thật vậy: 
10^(k+1) - 9(k+1) - 1 = 10 x 10^k - 9k - 10 = 10 x (10^k - 9k -1) + 81k 

10^k - 9k - 1 chia hết cho 27, nên lượng này nhân 10 lên cũng chia hết cho 27. 

81 chia hết cho 27, nên 81k chia hết cho 27. 

Vậy (*) đúng với mọi n thuộc N* (đpcm).

Bình luận (0)
CD
Xem chi tiết
TH
Xem chi tiết
H24
13 tháng 7 2021 lúc 10:30

đề sai kìa bn ơi 

Bình luận (0)
 Khách vãng lai đã xóa
HP
13 tháng 7 2021 lúc 11:11

sai đề hết

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết