Tính a,b,c,d sao cho a+b+c+d khác 0 và biết b+c+d/a=c+d+a/b=d+a+b/c=a+b+c/d=K
Cho 4 số a;b;c;d sao cho a+b+c+d khác 0.Biết (b+c+d)/a=(c+d+a)/b=(d+a+b)/c=(a+b+c)/d=k Tính k
cho bốn số a,b,c,d sao cho a+b+c+d khác 0 biết : b+c+d/a = c+d+a/b = d+a+b/c = a+b+c/d = k . tính giá trị của k
cộng thêm 1 vào mỗi tỉ số , ta được :
\(\frac{b+c+d}{a}+1=\frac{c+d+a}{b}+1=\frac{d+a+b}{c}+1=\frac{a+b+c}{d}+1\)
\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
vì a + b + c + d \(\ne\)0 nên a = b = c = d
Suy ra : k = \(\frac{3a}{a}=3\)
cho 4 số a,b,c sao cho a+b+c khác 0
biết b+c+d/a=c+d+a/b=d+a+b/c=a+b+c/d=K
Tim K
b6:tìm x,y,z
cho 4 số : a,b,c,d sao cho a+b+c+d khác 0. Biết b+c+d/a=c+d+a/b=d+a+b/c=a+b+c/d.tính k
Ta chỉ cần cộng thêm 1 vào mỗi tỉ số,
\(\frac{b+c+d}{a}+1=\frac{c+d+a}{b}+1=\frac{d+a+b}{c}+1=\frac{a+b+c}{d}+1\)
\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Vì a + b + c + d \(\ne\)0 nên a = b = c = d
\(\Rightarrow k=\frac{3a}{a}=3\)
Cho 4 số a, b, c, d sao cho a+b+c+d khác 0. Biết \(\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c}{d}\)=k
Khi đó k=.......
Áp dụng tính chất dãy tỉ số bằng nhau , ta có:
\(\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c}{d}=\frac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}\)
\(=\frac{3a+3b+3c+3d}{a+b+c+d}=\frac{3\left(a+b+c+d\right)}{a+b+c+d}=k\)
Th1: 3(a + b + c + d) = 0 Mà a + b + c + d khác 0 => Loại
Vậy k = 3
câu 1: cho bốn số tự nhiên a;b;c;d sao cho a+b+c+d khác 0 b+c+d/a=c+d+a/b=d+a+c/b=a+b+c/d=k tính giá trị của k
câu 2: cho tỉ lệ thức a/b=c/d chứng tỏ rằng a^2+b^2/c^2+d^2 = a.b/c.d
Cho 4 số a,b,c,d sao cho a+b+c+d khác 0
Biết \(\frac{b+c+d}{a}\) = \(\frac{c+d+a}{b}\) = \(\frac{d+a+b}{c}\) = \(\frac{a+b+c}{d}\) = k
Tính giá trị của k
Cộng thêm 1 vào mỗi tỉ số đã cho ta được:
\(\frac{b+c+d}{a}\) +1 = \(\frac{c+d+a}{b}\) +1 = \(\frac{d+a+b}{c}\) +1= \(\frac{a+b+c}{d}\) +1
\(\frac{a+b+c+d}{a}\) = \(\frac{a+b+c+d}{b}\) = \(\frac{a+b+c+d}{c}\) = \(\frac{a+b+c+d}{d}\)
Vì a+b+c+d khác 0 nên a=b=c=d
Suy ra k= \(\frac{3a}{a}\) = 3
cho 4 số a,b,c,d (a,b,c,d khác 0) biết \(\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{a+b+c}{d}=k\)
tính giá trị của k
Cho 4 số a,b,c,d sao cho a+b+c+d\(\ne\)0 biết \(\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c}{d}=k\)Tính k
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c}{d}\)
\(=\frac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}\)
\(=\frac{3a+3b+3c+3d}{a+b+c+d}\)
\(=\frac{3\left(a+b+c+d\right)}{a+b+c+d}\)
\(=3\)
Vậy k = 3
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{d+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c}{d}\)
\(=\frac{d+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}\)
\(=\frac{3(a+b+c+d)}{a+b+c+d}=3\)
Vậy k = 3