Những câu hỏi liên quan
BC
Xem chi tiết
MH
23 tháng 12 2021 lúc 5:30

Vì \(\left\{{}\begin{matrix}\left|2x-27\right|^{2011}\text{≥0,∀x}\\\left(3y+10\right)^{2012}\text{≥0,∀y}\end{matrix}\right.\)

⇒ \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\text{≥0,∀x},y\)

Dấu "=" ⇔ \(\left\{{}\begin{matrix}2x-27=0\\3y+10=0\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x=\dfrac{27}{2}\\y=-\dfrac{10}{3}\end{matrix}\right.\)

Vậy ...

Bình luận (0)
LV
Xem chi tiết
XO
18 tháng 12 2020 lúc 19:55

Ta có \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2022}\ge0\forall y\end{cases}}\Rightarrow\left|2x-27\right|^{2011}+\left(3y+10\right)^{2022}\ge0\forall x;y\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}\)

Vậy x = 27/2 ; y = -10/3 là giá trị cần tìm

Bình luận (0)
 Khách vãng lai đã xóa
HB
18 tháng 12 2020 lúc 19:58

ta có |2x-27| > hoặc = 0=> |2x-27|^2011> hoặc = 0

(3y+10)^2012> hoặc 0 mà |2x-27|^2011+(3y+10)^2012=0 

=>2x-27=0 hoặc 3y+10=0=>2x=27 hoặc 3y=-10

=>x=13,5 hoặc x=-10/3

vậy .............................

Bình luận (0)
 Khách vãng lai đã xóa
NT
18 tháng 12 2020 lúc 20:15

\(\left|2x+27\right|^{2011}+\left(3y+10\right)^{2012}=0\)

\(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2012}\ge0\forall y\end{cases}}\Rightarrow\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\ge0\forall x;y\)

Dấu ''='' xảy ra \(x=\frac{27}{2};y=-\frac{10}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
VA
20 tháng 4 2017 lúc 8:52

X=?

Y=?

Bình luận (0)
KB
19 tháng 12 2017 lúc 12:32

Tìm các giá trị của x, y thỏa mãn: |2x-27|2011+(3y+10)2012=0

Giải:Vì \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\\\left(3y+10\right)^{2012}\ge0\end{cases}}\)\(\Rightarrow\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\ge0\)

Kết hợp với giả thiết ta thấy \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\) nên:

\(\hept{\begin{cases}\left|2x-27\right|^{2011}=0\\\left(3y+10\right)^{2012}=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}\)

Vậy x=\(\frac{27}{2}\);y=\(-\frac{10}{3}\) thỏa mãn bài toán

Bình luận (0)
DT
Xem chi tiết
NT
11 tháng 12 2016 lúc 11:31

Sửa lại:
\(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)

\(\Rightarrow\left|2x-27\right|^{2011}=0\)\(\left(3y+10\right)^{2012}=0\)

+) \(\left|2x-27\right|^{2011}=0\)

\(\Rightarrow\left|2x-27\right|=0\)

\(\Rightarrow2x-27=0\)

\(\Rightarrow2x=27\)

\(\Rightarrow x=13,5\)

+) \(\left(3y+10\right)^{2012}=0\)

\(\Rightarrow3y+10=0\)

\(\Rightarrow3y=-10\)

\(\Rightarrow y=\frac{-10}{3}\)

Vậy \(x=13,5;y=\frac{-10}{3}\)

 

Bình luận (0)
NT
11 tháng 12 2016 lúc 11:02

Ta có:

\(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)

\(\Rightarrow\left|2x-27\right|^{2011}=0\)\(\left(2y+10\right)^{2012}=0\)

+) \(\left|2x-27\right|^{2011}=0\)

\(\Rightarrow\left|2x-27\right|=0\)

\(\Rightarrow2x-27=0\)

\(\Rightarrow2x=27\)

\(\Rightarrow x=13,5\)

+) \(\left(2y+10\right)^{2012}=0\)

\(\Rightarrow2y+10=0\)

\(\Rightarrow2y=-10\)

\(\Rightarrow y=-5\)

Vậy \(x=13,5;y=-5\)

 

Bình luận (3)
TD
Xem chi tiết
DH
1 tháng 2 2017 lúc 15:17

Vì 

|2x - 27|2011 ≥ 0

(3y + 10)2012 ≥ 0

=> |2x - 27|2011 + (3y + 10)2012 ≥ 0

Dấu "=" xảy ra <=> |2x - 27|2011  = 0 và (3y + 10)2012 =0

<=> 2x - 27 = 0 và 3y + 10 = 0

=> x = 27/2 và y = - 10/3

Bình luận (0)
QT
1 tháng 2 2017 lúc 15:26

ngu người

Bình luận (0)
TL
Xem chi tiết
NN
Xem chi tiết
KM
25 tháng 12 2018 lúc 16:21

Ta thấy \(\left|2x-27\right|\ge0\Rightarrow\left|2x-27\right|^{2011}\ge0\)với mọi x

\(\left(3y+10\right)^{2012}\ge0\)với mọi y

Suy ra \( \left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\ge0\)với mọi x,y

Mà \( \left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)

Khi đó \(\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}}\)

Vậy.....

Bình luận (0)
NH
1 tháng 12 2019 lúc 15:38

Ta có : \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\\\left(3y+10\right)^{2012}\ge0\end{cases}\Rightarrow\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\ge0}\)

Mà \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)

\(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x=27\\3y=-10\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{27}{2}\\y=\frac{-10}{3}\end{cases}}}\)

Bình luận (0)
 Khách vãng lai đã xóa

|2x−27|2011+(3y+10)2012=0

⇒|2x−27|2011=0 và (3y+10)2012=0

+) |2x−27|2011=0

⇒|2x−27|=0

⇒2x−27=0

⇒2x=27

⇒x=13,5

+) (3y+10)2012=0

Bình luận (0)
 Khách vãng lai đã xóa
LL
Xem chi tiết
TM
27 tháng 9 2017 lúc 21:20

Vì \(\left|2x-27\right|\ge0\Rightarrow\left|2x-27\right|^{2011}\ge0\);  \(\left(3y+10\right)^{2012}\ge0\)

=>\(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\ge0\)

Dấu "=" xảy ra khi \(\left|2x-27\right|^{2011}=\left(3y+10\right)^{2012}=0\Leftrightarrow\hept{\begin{cases}\left|2x-27\right|=0\\\left(3y+10\right)^{2012}=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}\)

Bình luận (0)
H24
Xem chi tiết
MH
23 tháng 12 2021 lúc 5:27

Vì \(\left\{{}\begin{matrix}\left|2x-27\right|^{2011}\text{≥0,∀x}\\\left(3y+10\right)^{2012}\text{≥0,∀y}\end{matrix}\right.\)

⇒ \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\text{≥0,∀x},y\)

Dấu "=" ⇔ \(\left\{{}\begin{matrix}2x-27=0\\3y+10=0\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x=\dfrac{27}{2}\\y=-\dfrac{10}{3}\end{matrix}\right.\)

Vậy ...

Bình luận (1)