Những câu hỏi liên quan
TG
Xem chi tiết
H24
11 tháng 10 2017 lúc 19:53

hreury

Bình luận (0)
LN
Xem chi tiết
CT
Xem chi tiết
PL
27 tháng 9 2016 lúc 13:23

Ko hieu đề 

Bình luận (0)
TN
18 tháng 3 2020 lúc 20:45

Ta có: a+b+c=1 <=>(a+b+c)2 = 1 <=> ab+bc+ca=0 (1)
Theo dãy tỉ số bằng nhau ta có:
xa=yb=zc=x+y+za+b+c=x+y+z1=x+y+zxa=yb=zc=x+y+za+b+c=x+y+z1=x+y+z
<=> x = a(x+y+z) ; y = b(x+y+z) ; z = c(x+y+z)
=> xy+yz+zx= ab(x+y+z)2+bc(x+y+z)2+ca(x + y + z)2
<=> xy+yz+zx =(ab+bc+ca)(x+y+z)2 (2)
từ (1) và (2) => xy + yz + zx = 0

Bình luận (1)
 Khách vãng lai đã xóa
H24
Xem chi tiết
TN
Xem chi tiết
ND
28 tháng 9 2023 lúc 21:13

Từ giả thiết : \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)

\(\Rightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2.\left(\dfrac{xy}{ab}+\dfrac{yz}{bc}+\dfrac{zx}{ca}\right)=1\)

\(\Rightarrow A+2.\left(\dfrac{xyc+yza+xzb}{abc}\right)=1\left(1\right)\)

Mà theo gt : \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)

\(\Rightarrow\dfrac{ayz+bxz+cxy}{xyz}=0\)

\(\Rightarrow ayz+bzx+cxy=0\)

Do đó : \(\left(1\right)=A=1\)

Bình luận (0)
NT
Xem chi tiết
OO
6 tháng 1 2017 lúc 13:27

a)Ta có: ab+ac+bc=-7                        (ab+ac+bc)^2=49

nên

(ab)^2+(bc)^2+(ac)^2=49

nên a^4+b^4+c^4=(a^2+b^2+c^2)^2−2(ab)^2−2(ac)^2−2(bc^)2=98

b) (x^2+y^2+z^2)/(a^2+b^2+c^2)= 
=x^2/a^2+y^2/b^2+z^2/c^2 <=> 
x^2+y^2+z^2=x^2+(a^2/b^2)y^2+ 
+(a^2/c^2)z^2+(b^2/a^2)x^2+y^2+ 
+(b^2/c^2)z^2+(c^2/a^2)x^2+ 
+(c^2/b^2)y^2+z^2 <=> 
[(b^2+c^2)/a^2]x^2+[(a^2+c^2)/b^2]y^2+ 
+[(a^2+b^2)/c^2]z^2 = 0 (*) 
Đặt A=[(b^2+c^2)/a^2]x^2; B=[(a^2+c^2)/b^2]y^2; 
và C=[(a^2+b^2)/c^2]z^2 
Vì a,b,c khác 0 nên suy ra A,B,C đều không âm 
Từ (*) ta có A+B+C=0 
Tổng 3 số không âm bằng 0 thì cả 3 số đều phải bằng 0,tức A=B=C=0 
Vì a,b,c khác 0 nên [(b^2+c^2)/c^2]>0 =>x^2=0 =>x=0 
Tương tự B=C=0 =>y^2=z^2=0 => y=z=0 
Vậy x^2011+y^2011+z^2011=0 
Và x^2008+y^2008+z^2008=0.

Bình luận (0)
HH
Xem chi tiết
BB
Xem chi tiết
TV
19 tháng 12 2020 lúc 21:16

Bài này dễ thôi:vv

Theo đề ta có: \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=0\Leftrightarrow\dfrac{xbc+yac+zab}{abc}=0\Leftrightarrow xbc+yac+zab=0\)

Lại có:\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=2\Rightarrow\left(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}\right)^2=4\)

=>\(\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}+2\left(\dfrac{ab}{xy}+\dfrac{bc}{yz}+\dfrac{ca}{xz}\right)=4\)

=>\(\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}+2\left(\dfrac{abz+bcx+cay}{xyz}\right)=4\)

=>\(\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}+2.0=4\Rightarrow\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}=2\)

Vậy...

Bình luận (2)
NT
Xem chi tiết