Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
H24
Xem chi tiết
NQ
Xem chi tiết
YC
Xem chi tiết
PP
1 tháng 1 2019 lúc 9:47

Đặt \(\sqrt{x^2+3}=t\left(t\ge0\right)\)

=>\(t^2=x^2+3\Leftrightarrow x^2=t^2-3\)

Pt trở thành \(\left(3x+1\right)t=t^2-3+2x^2+2x+3\)

<=>\(t^2-\left(3x+1\right)+2x^2+2x=0\)

\(\Delta=\left(3x+1\right)^2-4\left(2x^2+2x\right)=x^2-2x+1=\left(x-1\right)^2\)

Nên \(\left[{}\begin{matrix}t=\dfrac{3x+1-x+1}{2}=x+1\\t=\dfrac{3x+1+x-1}{2}=2x\end{matrix}\right.\)

+, \(t=x+1\Leftrightarrow\sqrt{x^2+3}=x+1\Rightarrow x^2+3=x^2+2x+1\left(x\ge-1\right)\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\left(TM\right)\)

+, \(t=2x\Leftrightarrow\sqrt{x^2+3}=2x\Rightarrow x^2+3=4x^2\left(x\ge0\right)\Leftrightarrow3x^2-3=0\Leftrightarrow\left[{}\begin{matrix}x=1\left(TM\right)\\x=-1\left(L\right)\end{matrix}\right.\)

Vậy \(S=\left\{-1;1\right\}\)

Bình luận (2)
H24
Xem chi tiết
ND
Xem chi tiết
LM
Xem chi tiết
HP
Xem chi tiết
TD
17 tháng 8 2016 lúc 14:16

 

  

 

Bình luận (0)
BL
Xem chi tiết
TL
18 tháng 6 2019 lúc 11:49

Với Kho Đề đã được cập nhật, hiện tại Đáp Án Chi Tiết môn TOÁN Kỳ thi THPT quốc gia đã có trên Ứng Dụng. Các bạn tha hồ kiểm tra đối chiếu với bài làm của mình rồi nhé Tải ngay App về để xem đáp án chi tiết nào: https://giaingay.com.vn/downapp.html

Bình luận (0)
TL
18 tháng 6 2019 lúc 11:49

Tải app giải toán và kết bạn trao đổi nào cả nhà: https://www.facebook.com/watch/?v=485078328966618

Bình luận (0)
TL
18 tháng 6 2019 lúc 11:49

Với Kho Đề đã được cập nhật, hiện tại Đáp Án Chi Tiết môn TOÁN Kỳ thi THPT quốc gia đã có trên Ứng Dụng. Các bạn tha hồ kiểm tra đối chiếu với bài làm của mình rồi nhé Tải ngay App về để xem đáp án chi tiết nào: https://giaingay.com.vn/downapp.html

Bình luận (0)
WR
Xem chi tiết
TK
14 tháng 7 2019 lúc 15:24

ĐK \(x\ge-\frac{2}{3}\)

Pt

<=> \(x^3+2x^2-4x-3+3\left(x+1\right)\left(x+1-\sqrt{3x+2}\right)=0\)

<=> \(\left(x+3\right)\left(x^2-x-1\right)+3\left(x+1\right).\frac{\left(x+1\right)^2-3x-2}{x+1+\sqrt{3x+2}}=0\)

<=> \(\left(x+3\right)\left(x^2-x-1\right)+3\left(x+1\right).\frac{x^2-x-1}{x+1+\sqrt{3x+2}}=0\)

<=> \(\orbr{\begin{cases}x^2-x-1=0\\x+3+\frac{3\left(x+1\right)}{x+1+\sqrt{3x+2}}=0\left(2\right)\end{cases}}\)

Pt (2) vô nghiệm do VT>0 với mọi \(x\ge-\frac{2}{3}\)

=> \(x=\frac{1\pm\sqrt{5}}{2}\)(tmĐKXĐ)

Vậy \(x=\frac{1\pm\sqrt{5}}{2}\)

Bình luận (0)