Những câu hỏi liên quan
NL
Xem chi tiết
AD
Xem chi tiết
RR
14 tháng 5 2018 lúc 21:22

Gọi 4 số đó là a , (a+1) , (a + 2) , (a + 3) 

Do là 4 số tự nhiên liên tiếp nên buộc chúng phải là số chẵn

Đặt \(a^2+\left(a+1\right)^2+\left(a+2\right)^2+\left(a+3\right)^2=t^2\)

Ta có 

\(a^2+\left(a+1\right)^2+\left(a+2\right)^2+\left(a+3\right)^2=4a^2+12a+14=4\left(a^2+3a+3\right)+2\)

Nhận thấy \(a^2+\left(a+1\right)^2+\left(a+2\right)^2+\left(a+3\right)^2\equiv2\left(mod4\right)\)

Mặt khác , \(t^2\equiv0\left(mod4\right)\)

=> Vô lý 

Vậy tổng bình phương 4 số tự nhiên liên tiếp không là số chính phương 

Bình luận (0)
NL
Xem chi tiết
NT
29 tháng 1 2019 lúc 20:57

gọi 4 số tự nhiên liên tiếp là a;a+1;a+2;a+3(a thuộc N)

Bình luận (0)
H24
29 tháng 1 2019 lúc 21:00

ta có :a+(a+1)+(a+2)+(a+3)=4a+6 vì:4a:2và 6:2=)4a+6:2 và4a:4 và 6ko chia hết cho4=)4a+6 ko chia hết cho 4 =)4a+6:2 nhưng ko chia hết cho 4 vậy tổng 4 số tự nhiên liên tiếp ko là số chính phương

Bình luận (0)
NT
Xem chi tiết
DL
25 tháng 2 2018 lúc 20:35

Óc Chó Là Có Thật

Bình luận (0)
H24
25 tháng 2 2018 lúc 20:39

Gọi 5 số tự nhiên liên tiếp đó là n - 2 ; n - 1 ; n ; n + 1 ; n + 2 ( n thuộc N , n > 2 )

Ta có : \(\left(n-2\right)^2+\left(n-1\right)^2+n^2+\left(n+1\right)^2+\left(n+2\right)^2=5.\left(n^2+n\right)\)

Vì \(n^2\)không thể tận cùng là 3 hoặc 8 nên \(n^2+2\)không chia hết cho 5

\(\Rightarrow\)\(5.\left(n^2+2\right)\)không là số chính phương hay tổng các bình phương của 5 số tự nhiên liên tiếp không phải là 1 số chính phương ( đpcm )

Bình luận (0)
H24
Xem chi tiết
TN
29 tháng 3 2015 lúc 11:01

Ta có:

1+2+3+...+2005≡(2005+1).2005:2≡2006.2005:2

 

≡1003.2005≡3.1≡3

(mod 4)

Vậy tổng của các số từ 1 đến 2005 có dạng 4k+3 (kN) nên không là số chính phương (đpcm) 

Bình luận (0)
ND
Xem chi tiết
TG
13 tháng 11 2014 lúc 22:09

cô giáo tớ vừa cho bài tập này về nhà làm

Bình luận (0)
ND
16 tháng 11 2014 lúc 9:22

Trong 4 số tự nhiên liên tiếp có 2 số chẵn và 2 số lẻ

Mà số chính phương chia 4 dư 0 (với số chẵn) hoặc 1 (với số lẻ)

                       suy ra tổng các bình phương của 4 số tự nhiên liên tiếp chia 4 dư 2(vô lí)

            ((a^2+(a+1)^2+(a+2)^2+(a+3)^2) suy ra điều phải chứng minh

Bình luận (0)
ND
21 tháng 11 2014 lúc 5:48

Nguyễn Thùy Dương : bạn trả lời chưa chính xác và chưa khách quan

Bình luận (0)
SN
Xem chi tiết
ND
1 tháng 7 2015 lúc 21:56

 Gọi 5 số tự nhiên liên tiếp là (a-2 ) (a-1) a (a+1) (a+2)
Ta có : A = (a-2)^2+(a-1)^2+a^2+(a+1)^2+(a+2)^2<br />
                     =a^2-4a+4+a^2-2a+1+a^2+a^2+2a+1+a^2+4a+4<br />
                     =5a^2+10
Ta có số chính phương luôn luôn có dạng 4k +1 hoặc 4k
Xét 2 TH ta luôn có:
TH1: a^2 = 4k
Ta có A= 20k + 10 = 4m + 2 (m thuộc N)  ko là số chính phương
TH2: a^2 = 4k + 1
Ta có: A= 20k + 15 = 4m + 3(m thuộc N)  ko là số chính phương
đpcm

Bình luận (0)
DV
1 tháng 7 2015 lúc 22:05

Gọi 5 số tự nhiên liên tiếp là \(n-2;n-1;n;n+1;n+2\)

Đặt tổng bình phương của chúng là \(A=\left(n-2\right)^2+\left(n-1\right)^2+n^2+\left(n+1\right)^2+\left(n+2\right)^2\)

\(=5n^2+10=5.\left(n^2+2\right)\)

n2 có tận cùng là 3 hoặc 8 \(\Rightarrow\) n2 + 2 có tận cùng là 5 hoặc 0 \(\Rightarrow\) n2 + 2 chia hết cho 5.

\(\Rightarrow\) 5.(n2 + 2) chia hết cho 25 \(\Rightarrow\) A không phải số chính phương.

 

 

Bình luận (0)
DT
5 tháng 12 2017 lúc 19:31

đinh tuấn việt sai

Bình luận (0)
SN
Xem chi tiết
TL
16 tháng 7 2015 lúc 11:17

Gọi 5 số tự nhiên liên tiếp là n- 2; n - 1; n ; n + 1; n + 2

Ta có : (n-2)2 + (n-1)2 + n2 + (n+1)2 + (n +2)2 =  (n2 - 4n + 4) + (n2 - 2n + 1) + n2 + (n2 + 2n + 1)+( n2 + 4n + 4) = 5n2 + 10 = 5.(n+ 2)

 Ta có 5. (n2 + 2) chia hết cho 5 nhưng không chia hết cho 25 

vì n2 + 2 không chia hết cho 5 (do n2 có thể  tận cùng là 0;1;4;5;6;9 )

=> 5.(n+ 2) không là số chính phương => đpcm

Bình luận (0)
HV
16 tháng 7 2015 lúc 11:08

Gọi 5 số tự nhiên liên tiếp là (a-2 ) (a-1) a (a+1) (a+2)
Ta có : 
Ta có số chính phương luôn luôn có dạng 4k +1 hoặc 4k
Xét 2 TH ta luôn có:
TH1: 
Ta có A= 20k + 10 = 4m + 2 (m thuộc N)  ko là số chính phương
TH2: 
Ta có: A= 20k + 15 = 4m + 3(m thuộc N)  ko là số chính phương

Bình luận (0)
TY
Xem chi tiết
TY
26 tháng 7 2016 lúc 16:34

mau lên các bạn!

Bình luận (0)