Tim x , y
\(\left|x+2\right|+\left|y-5\right|\)
Help me !
\(\left\{{}\begin{matrix}\left(x+y\right)^2-\left(y^2-x\right)^3=6\left(x^2-x\right)-\left(y^2-y\right)\\8x^4+8y^4+8x^2+8y^2=9-16xy\left(x+y\right)\end{matrix}\right.\)
Help me giải hpt này với ạ
Tìm x,y bt: \(\left(x-13+y\right)^2+\left(x-6-y\right)^2=0.\)
HELP ME!
(x - 13 + y)2 + (x - 6 - y)2 ≥ 0 + 0 = 0
Vì dấu "=" xảy ra nên x - 13 + y = 0 và x - 6 - y = 0
x + y = 13 và x - y = 6
x = (13 - 6) : 2 = 3,5
y = 13 - 3,5 = 9,5
Vậy x = 3,5 và y = 9,5
(\(x\) - 13 + y)2 + (\(x\) - 6 - y)2 = 0
(\(x\) - 13 + y)2 ≥ 0 ∀ \(x;y\)
(\(x-6-y\))2 ≥ 0 ∀ \(x;y\)
⇒(\(x-13+y\))2 + (\(x\) - 6- y)2 = 0
⇔ \(\left\{{}\begin{matrix}x-13+y=0\\x-6-y=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x-6-y=0\\x-13+y+x-6-y=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}y=x-6\\2x=19\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=\dfrac{19}{2}\\y=\dfrac{19}{2}-6\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=\dfrac{19}{2}\\y=\dfrac{7}{2}\end{matrix}\right.\)
𝓥𝓲̀ \(\left(x-13+y\right)^2\ge0;\left(x-6-y\right)^2\ge0\)
\(\Rightarrow\left(x-13+y\right)^2+\left(x-6-y\right)^2\ge0\)
𝓓𝓪̂́𝓾 𝓫𝓪̆̀𝓷𝓰 𝔁𝓪̉𝔂 𝓻𝓪 𝓴𝓱𝓲 \(\left(x-13+y\right)^2=0;\left(x-6-y\right)^2=0\)
\(\Rightarrow\left(x-13+y\right)^2=0\) \(\Rightarrow\left(x-6-y\right)^2=0\)
\(x-13+y=0\) \(x-6-y=0\)
\(x+y=13\) \(x-y=6\)
\(\Rightarrow\)𝔁 𝓵𝓪̀ 1 𝓼𝓸̂́ 𝓵𝓸̛́𝓷 𝓱𝓸̛𝓷 𝔂 𝓫𝓸̛̉𝓲 𝓿𝓲̀ 𝓴𝓱𝓲 𝔁-𝔂 𝓴𝓮̂́𝓽 𝓺𝓾𝓪̉ 𝓵𝓪̀ 1 𝓼𝓸̂́ 𝓷𝓰𝓾𝔂𝓮̂𝓷 𝓭𝓾̛𝓸̛𝓷𝓰
\(\Rightarrow x=\left(13+6\right)\div2=9,5\)
\(\Rightarrow y=13-9,5=3,5\)
𝓥𝓪̣̂𝔂 𝔁=9,5 𝓿𝓪̀ 𝔂=3,5
Tìm x,y bt: \(\left(x-13+y\right)^2+\left(x-6-y\right)^2=0.\)
HELP ME!
(\(x\) -13 +y)2 + (\(x\) - 6 - y)2 = 0
(\(x-13+y\))2 ≥0; (\(x\) - 6 - y)2 ≥ 0∀ \(x;y\)
⇒(\(x-13+y\))2 + (\(x-6-y\))2 = 0
⇔ \(\left\{{}\begin{matrix}x-13+y=0\\x-6-y=0\end{matrix}\right.\)
⇒ -13 - 6 + 2\(x\) = 0 ⇒ \(x\) = \(\dfrac{19}{2}\) ⇒ y = \(\dfrac{19}{2}\) - 6 ⇒ y = \(\dfrac{7}{2}\)
Vậy (\(x\);y) = (\(\dfrac{19}{2}\); \(\dfrac{7}{2}\))
\(\left(x-13+y\right)^2+\left(x-6-y\right)^2=0\left(1\right)\)
Ta có :
\(\left\{{}\begin{matrix}\left(x-13+y\right)^2\ge0,\forall x;y\in R\\\left(x-6-y\right)^2\ge0,\forall x;y\in R\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\left(x-13+y\right)^2=0\\\left(x-6-y\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-13+y=0\\x-6-y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=19\\y=x-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{19}{2}\\y=\dfrac{19}{2}-6=\dfrac{7}{2}\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=\dfrac{19}{2}\\y=\dfrac{7}{2}\end{matrix}\right.\) thoả mãn đề bài
Cho 3 số x, y, z thỏa mãn: \(\dfrac{x}{2018}=\dfrac{y}{2019}=\dfrac{z}{2020}\)
CMR: \(\left(x-z\right)^3=8\left(x-y\right)^2\left(y-z\right)\)
HELP ME!
Lời giải:
Đặt $\frac{x}{2018}=\frac{y}{2019}=\frac{z}{2020}=a$
$\Rightarrow x=2018a; y=2019a; z=2020a$
$\Rightarrow (x-z)^3=(2018a-2020a)^3=(-2a)^3=-8a^3(1)$
Mặt khác:
$8(x-y)^2(y-z)=8(2018a-2019a)^2(2019a-2020a)=8a^2.(-a)=-8a^3(2)$
Từ $(1); (2)$ ta có đpcm.
Xét sự biến thiên của hàm số sau:
1, \(y=4-3x\)
2, \(y=x^2+4x-5\)
3, \(y=\dfrac{x}{x-1}trên\left(-\infty;1\right)\)
4, \(y=\dfrac{2}{x-2}trên\left(-\infty;2\right)vàtrên\left(2;+\infty\right)\)
Hi guys, please help me :))))
I need it now !!!!
1 nghịch biến(a<0)
2 đồng biến
3,4 thay các g trị tm đk vào
hojk tốt
M.n oiw~~~~ help me, please~~~~~
Phân tích đa thức thành nhân tử:
\(A=x^7+x^5+x^4+x^3+x^2+1\)
\(B=\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3-\left(y^2+z^2\right)^3\)
\(C=\left(x+y\right)^5-x^5-y^5\)
a) \(x^7+x^5+x^4+x^3+x^2+1\)
\(=\left(x^7+x^4\right)+\left(x^5+x^2\right)+\left(x^3+1\right)\)
\(=x^4\left(x^3+1\right)+x^2\left(x^3+1\right)+\left(x^3+1\right)\)
\(=\left(x^3+1\right)\left(x^4+x^2+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)\left(x^4+x^2+1\right)\)
tim cap (x,y ) thoa man
\(x^2.\left(x+3\right)+y^2.\left(y+5\right)-\left(x+y\right).\left(x^2-xy+y^2\right)=0\)
x2.(x+3)+y2.(y+5)−(x+y).(x2−xy+y2)=0
<=>\(x^3+3x^2+y^3+5y^2-x^3-y^3=0\)(áp dụng hằng đẳng thức)
<=> \(3x^2+5y^2=0\)
ta thấy \(3x^2\ge0\)với mọi x
\(5y^2\ge0\) với mọi y
=> \(3x^2+5y^2\ge0\)
=> x=0 và y=0
vậy cặp số (x;y)=(0;0)
Cho biểu thức:
\(H=\frac{x^2y^2}{\left(x+1\right)\left(y-1\right)}-\frac{x^2}{\left(x+y\right)\left(y-1\right)}-\frac{y^2}{\left(x+y\right)\left(x+1\right)}\)
a)Rút gọn H
b)Tìm các cặp số nguyên (x;y) sao cho giá trị của H=6
Help me plz =((
quy đồng H lên rồi rút gọn
sau ko rút gọn xong thì tìm x nguyên khi H=6
M.n oiw~~~ help me~~~
Phân tích đa thức thành nhân tử:
\(A=x^7+x^5+x^4+x^3+x^2+1\)
\(B=\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3-\left(y^2+z^2\right)^3\)
\(C=\left(x+y\right)^5-x^5-y^5\)