Những câu hỏi liên quan
NC
Xem chi tiết
DY
5 tháng 8 2018 lúc 9:58

a) 3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3

=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]

=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)] 

=n.(n+1).(n+2) 


=>S=[n.(n+1).(n+2)] : 3

Bình luận (0)
NC
29 tháng 8 2022 lúc 21:24

bb

Bình luận (0)
ND
Xem chi tiết
HT
Xem chi tiết
XO
23 tháng 12 2019 lúc 20:51

a) \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}=1-\frac{1}{n+1}\)

b) \(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\right)\)

         \(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(=\frac{1}{4}-\frac{1}{2\left(n+1\right)\left(n+2\right)}\)

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
AN
23 tháng 1 2019 lúc 13:35

Thêm dấu ngoặc vô đi b

Bình luận (0)
NT
Xem chi tiết
NT
20 tháng 2 2023 lúc 0:38

Câu 6:

uses crt;

var n,i:integer;

begin

clrscr;

readln(n);

for i:=1 to n do 

if n mod i=0 then write(i:4);

readln;

end.

5:

uses crt;

var n,i,dem:integer;

begin

clrscr;

readln(n);

dem:=0;

for i:=0 to n do

if i mod 2=1 then 

begin

write(i:4);

dem:=dem+1;

end;

writeln;

writeln(dem);

readln;

end.

Bình luận (0)
PT
Xem chi tiết
CD
Xem chi tiết
PS
Xem chi tiết
SF
10 tháng 11 2017 lúc 18:19

câu 1

Câu hỏi của Ngọc Hà - Toán lớp 6 - Học toán với OnlineMath

Bình luận (0)
NP
Xem chi tiết