Những câu hỏi liên quan
H24
Xem chi tiết
MT
24 tháng 4 2016 lúc 8:02

Giả sử đa thức P(x) tồn tại một nghiệm n nào đó thỏa mãn ( n là số thực)

Khi đó: P(x) = x2 -2x + 2=0

           x.x- x-x +2=0

          x(x-1) - (x-1) +1 = 0

           (x-1)(x-1) = -1

=> (x-1)2 = -1 mà (x-1)2 luôn  \(\ge\) 0 với mọi x (vô lí)

Vậy điều giả sử là sai, đa thức P(x) vô nghiệm

Bình luận (0)
NT
24 tháng 4 2016 lúc 8:06

vô nghiệm nha

Bình luận (0)
HN
24 tháng 4 2016 lúc 8:27

p(x)= x^2-2x+2

     = x^2-x-x+1+1

     =(x^2-x)-(x-1)+1

     =x(x-1)-(x-1).1+1

     =(x-1)^2+1>0+1>0

vây...

Bình luận (0)
TH
Xem chi tiết
EC
1 tháng 8 2021 lúc 16:00

Để phương trình có nghiệm thì f(x)=0

    ⇔x2-2x+2016=0

    ⇔ (x-1)2+2015=0

    ⇔ (x-1)2=-2015 (vô lí do (x-1)2≥0)

Vậy,phương trình vô nghiệm

Bình luận (0)
TL
1 tháng 8 2021 lúc 16:01

F(x)=x2−2x+2016F(x)

F(x)=x2−2x+1+2015

F(x)=x2−x−x+1+2015

=x(x−1)−(x−1)+2015

=(x−1)^2+2015

Vì (x−1)2+2015≥2015>0 với mọi x ∈ R

=>F(x) vô nghiệm  (đpcm)

Bình luận (0)
NM
Xem chi tiết
TC
17 tháng 4 2022 lúc 20:44

ta có:\(x\ge0\Rightarrow2x^2\ge0\)

\(\Rightarrow2x^2+2x\ge0\)

mà 10 > 0

\(=>2x^2+2x+10>0\)

hayf(x) ko có nghiệm

Bình luận (0)
NL
Xem chi tiết
ST
26 tháng 4 2016 lúc 18:20

Ta có: x² + 2x + 2 

= x² + 2x + 1 + 1 

= (x² + 2x + 1) + 1 

= (x + 1)² + 1 

Do (x + 1)² ≥ 0 ∀x ∈ R 

=> (x + 1)² + 1 ≥ 1 > 0 ∀x ∈ R 

=> x² + 2x + 2 > 0 ∀x ∈ R 

=> đpcm

Bình luận (0)
H24
26 tháng 4 2016 lúc 18:21

Ta có: x² + 2x + 2 

= x² + 2x + 1 + 1 

= (x² + 2x + 1) + 1 

= (x + 1)² + 1 

Do (x + 1)² ≥ 0 ∀x ∈ R 

=> (x + 1)² + 1 ≥ 1 > 0 ∀x ∈ R 

=> x² + 2x + 2 > 0 ∀x ∈ R 

=> đpcm

Bình luận (0)
SH
26 tháng 4 2016 lúc 18:22

Ta có: x² + 2x + 2 

= x² + 2x + 1 + 1 

= (x² + 2x + 1) + 1 

= (x + 1)² + 1 

Do (x + 1)² ≥ 0 ∀x ∈ R 

=> (x + 1)² + 1 ≥ 1 > 0 ∀x ∈ R 

=> x² + 2x + 2 > 0 ∀x ∈ R 

=> đpcm

Bình luận (0)
BS
Xem chi tiết
NT
11 tháng 5 2022 lúc 20:35

Ta có 2x^10 >= 0 ; x^8 >= 0 ; 2 > 0 

=> 2x^10 + x^8 + 2 > 0 

Vậy pt ko có nghiệm 

Bình luận (0)
VT
11 tháng 5 2022 lúc 20:35

Vì `x^10 = (x^2)^5 >=0, x^8 = (x^2)^6` >=0, 2 >0`

`=> x^10 + x^8 + 2 >= 0 + 0 + 2 = 2 > 0`

`=>` Đa thức vô nghiệm

Bình luận (0)
NT
11 tháng 5 2022 lúc 20:36

Đặt \(2x^{10}+x^8+2=0\)

Mà \(\left\{{}\begin{matrix}2x^{10}\ge0\\x^8\ge0\end{matrix}\right.\) \(;\forall x\)

\(\rightarrow2x^{10}+x^8+2\ge2>0\)

--> đa thức không có nghiệm

Bình luận (0)
DN
Xem chi tiết
NL
21 tháng 5 2016 lúc 9:15

A=x2+2x+2=x2+2.x.1+12+1=(x+1)2+1

\(\left(x+1\right)^2\ge0\)=>(x+1)2+1>0

                                =>     A      >0 =>A vô nghiệm (đpcm)

Bình luận (0)
DN
21 tháng 5 2016 lúc 9:15

Ta có: A = x^2 + 2x +2

              = x^ 2 +x + x +1 + 1

              = (x^2 + x) + (x+1) + 1

              = x(x+1) + (x+1) + 1

              = (x+1)(x+1) + 1

              = (x+1)^2 +1

Vì (x+1)^2 \(\ge\) 0 (với mọi x) nên (x+1)^2 + 1 \(\ge\)1 > 0 (với mọi x)

Vậy đa thức A ko có nghiệm

Bình luận (0)
TT
21 tháng 5 2016 lúc 9:15

Ta có : \(x^2\ge0\)                (1)

           \(2x\ge0\)                (2)

Và :      \(2>0\)                  (3)

Từ (1)(2) và (3) ta có thể suy ra rằng :\(x^2+2x+2\ge0\)

Dĩ nhiên rằng đa thức \(x^2+2x+2#0\)

Vậy : đa thức \(A=x^2+2x+2\)không có nghiệm (đpcm)

Bình luận (0)
NT
Xem chi tiết
HP
27 tháng 4 2016 lúc 19:36

\(F\left(x\right)=x^2-2x+2016\)

\(F\left(x\right)=x^2-2x+1+2015\)

\(F\left(x\right)=x^2-x-x+1+2015=x\left(x-1\right)-\left(x-1\right)+2015=\left(x-1\right)^2+2015\)

\(\left(x-1\right)^2+2015\ge2015>0\) với mọi x E R

=>F(x) vô nghiệm  (đpcm)

Bình luận (0)
H24
27 tháng 4 2016 lúc 20:17

xét đa thức F (x) = x2 - 2x +2016 có :

x>= 0 với mọi x 

2x >= 0 với mọi x 

2016 > 0 với mọi x  

suy ra : x-2x  +2016 > 0 vói mọi x 

hay đa thức F(x) = x-2x +2016 ko có nghiệm 

Bình luận (0)
CY
Xem chi tiết
LD
10 tháng 7 2020 lúc 21:40

\(\left(x+1\right)^2=x^2+2\cdot x\cdot1+1^2=x^2+2x+1=VP\left(đpcm\right)\)

\(P\left(x\right)=x^2+2x+4\)

\(\Delta=b^2-4ac=2^2-4\cdot1\cdot4=4-16=-12\)

\(\Delta< 0\)=> Đa thức vô nghiệm ( đpcm ) 

Bình luận (0)
 Khách vãng lai đã xóa
2U
10 tháng 7 2020 lúc 21:42

\(\left(x+1\right)^2=\left(x+1\right)\left(x+1\right)=x^2+x+x+1=x^2+2x+1\)

=>  \(x^2+2x+1=x^2+2x+1\left(\text{đ}pcm\right)\)

Ta có : \(P\left(x\right)=x^2+2x+4=0\)

\(\hept{\begin{cases}x^2\ge0\\2x\ge0\\4>0\end{cases}\Rightarrow vonghiem}\)

Bình luận (0)
 Khách vãng lai đã xóa
LD
10 tháng 7 2020 lúc 21:47

Ê Tú ... Ai dạy mi \(2x\ge0\)đấy :)

Cách khác delta

\(P\left(x\right)=x^2+2x+4\)

\(P\left(x\right)=x^2+2x+1+3\)

\(P\left(x\right)=\left(x+1\right)^2+3\)

\(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\3>0\end{cases}}\Rightarrow\left(x+1\right)^2+3\ge3>0\forall x\)

=> đpcm 

Bình luận (0)
 Khách vãng lai đã xóa
KB
Xem chi tiết

Giả sử đa thức P(x) có nghiệm nguyên 

=>P(x) có nghiệm chia hết cho 1 hoặc -1

=>1 và -1 là nghiệm

+) Nếu x=1

⇒P(1)=1^4−3.1^3−4.1^2−2.1−1⇒P(1)=1^4-3.1^3-4.1^2-2.1-1

⇒P(1)=1−3.1−4.1−2.1−1⇒P(1)=1-3.1-4.1-2.1-1

⇒P(1)=1−3−4−2−1⇒P(1)=1-3-4-2-1

⇒P(1)=−9≠0⇒P(1)=-9≠0

⇒x=1 không phải là nghiệm của P(x)P(x)

+) Nếu x=−1

⇒P(−1)=(−1)^4−3.(−1)^3−4.(−1)^2−2.(−1)−1⇒P(-1)=(-1)^4-3.(-1)^3-4.(-1)^2-2.(-1)-1

⇒P(−1)=1−3.(−1)−4.1−(−2)−1⇒P(-1)=1-3.(-1)-4.1-(-2)-1

⇒P(−1)=1+3−4+2−1⇒P(-1)=1+3-4+2-1

⇒P(−1)=1≠0⇒P(-1)=1≠0

⇒x=−1 không phải là nghiệm của P(x)P(x)

Vậy P(x) không có nghiệm là số nguyên

 

Bình luận (0)