Những câu hỏi liên quan
LV
Xem chi tiết
TM
Xem chi tiết
NM
6 tháng 11 2021 lúc 9:28

Bài 2:

a, Gọi d=ƯCLN(2n+1;4n+3)

\(\Rightarrow2n+1⋮d;4n+3⋮d\\ \Rightarrow2\left(2n+1\right)-4n-3⋮d\\ \Rightarrow1⋮d\Rightarrow d=1\)

Vậy ƯCLN(2n+1;4n+3)=1 hay ta đc đpcm

b, Gọi d=ƯCLN(3n+5;5n+8)

\(\Rightarrow3n+5⋮d;5n+8⋮d\\ \Rightarrow5\left(3n+5\right)-3\left(5n+8\right)⋮d\\ \Rightarrow1⋮d\Rightarrow d=1\)

Vậy ƯCLN(3n+5;5n+8)=1 hay ta đc đpcm

Bình luận (6)
KL
Xem chi tiết
IM
23 tháng 11 2016 lúc 12:46

Gọi ƯCLN(3n+1 ; 4n +1 ) là d

\(\begin{cases}3n+1⋮d\\4n+1⋮d\end{cases}\)

=> 4 ( 3n + 1) - 3 ( 4n + 1 ) ⋮ d

=> 1 ⋮ d

=> d = 1

Vậy .......

Bình luận (0)
HT
23 tháng 11 2016 lúc 13:44

BT 18:Chứng minh hai số sau là hai số nguyên tố cùng nhau:

1) 3n + 1 và 4n + 1 với n ∈ N

Gọi d là (3n + 1, 4n+1)

=) 3n+1 chia hết cho d

=) 4n+1 chia hết cho d

Vì 3n+1 là số lẻ mà d là ước của 3n+1 =) d là số lẻ

Ta có: 4(3n+1) - 3(4n+1)

= 12n + 4 - 12n+3

= 1

hay d chia hết cho 1 =) d =1 (đpcm)

do đó : (3n + 1, 4n+1) = 1

Bình luận (0)
KL
Xem chi tiết
NT
22 tháng 2 2022 lúc 10:33

Chứng minh hai số nào vậy bạn?

Bình luận (0)
KL
Xem chi tiết
IM
23 tháng 11 2016 lúc 12:41

Goi ƯCLN 2n+1 ; 14n+5 là d

\(\Rightarrow\begin{cases}2n+1⋮d\\14n+5⋮d\end{cases}\)

=> 7 ( 2n + 1 ) - ( 14 n + 5 ) ⋮ d

=> 2 ⋮ d

Mà 2n + 1 lẻ

=> d = 1

Vậy ...........

Bình luận (0)
HT
23 tháng 11 2016 lúc 13:40

BT 18:Chứng minh hai số sau là hai số nguyên tố cùng nhau

:3) 2n + 1 và 14n + 5 với n ∈ N

Gọi d là = (2n+1, 14n+5)

=) 2n+1 chia hết cho d

=)14n+ 5 chia hết cho d

Vì 2n+1 là số lẻ mà d là ước của 2n+1

=) d là số lẻ

Ta có: 7 (2n+1) - (14n+5)

= 14n + 7 - 14n + 5

= 2

Mà 2n+1 lẻ

=) d= 1

Vậy (2n+1, 14n+5) = 1

 

Bình luận (0)
KL
Xem chi tiết
NT
23 tháng 11 2016 lúc 12:33

Giải:

Gọi \(d=UCLN\left(7n+10;5n+7\right)\)

Ta có:

\(7n+10⋮d\Rightarrow2\left(7n+10\right)⋮d\Rightarrow14n+20⋮d\)

\(5n+7⋮d\Rightarrow3\left(5n+7\right)⋮d\Rightarrow15n+21⋮d\)

\(\Rightarrow15n+21-14n-20⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow d=UCLN\left(7n+10;5n+7\right)=1\)

\(\Rightarrow\) 7n + 10 và 5n + 7 là 2 số nguyên tố cùng nhau

 

Bình luận (0)
IM
23 tháng 11 2016 lúc 12:32

Gọi ƯCLN7n+10 ; 5n+7 là d

Theo đề ra ta có :

\(\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}\)

=> \(5\left(7n+10\right)-7\left(5n+7\right)⋮d\)

=> \(45n+50-\left(45n+49\right)⋮d\)

=> 1⋮ d

=> d = 1

Vậy (7n+10 ; 5n + 7 ) = 1

Bình luận (1)
KL
Xem chi tiết
IM
23 tháng 11 2016 lúc 12:43

Gọi ƯCLN(3n+1 ; 5n + 2 ) là d

=> \(\begin{cases}3n+2⋮d\\5n+2⋮d\end{cases}\)

=> 5 ( 3n + 2 ) - 3 ( 5n + 2 ) ⋮ d

=> 2 ⋮ d

Mà chưa xác định được n chẵn hay lẻ

=> Đề sai

Bình luận (0)
KL
23 tháng 11 2016 lúc 14:51

Nhầm nha, Đề sai ồi,... Đề đúng:

3n + 2 và 5n + 3 với n N

Bình luận (0)
LD
Xem chi tiết
TA
Xem chi tiết