Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
MT
Xem chi tiết
MT
Xem chi tiết
DV
24 tháng 9 2015 lúc 20:48

Bài 3 :

\(x=3y=2z\)

\(\Rightarrow x=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{2}}\)

\(\Rightarrow\frac{2x}{2}=\frac{3y}{1}=\frac{4z}{2}=\frac{2x-3y+4z}{2-1+2}=\frac{k}{3}\)

\(\Rightarrow x=\frac{k}{3}\)

     \(y=\frac{k}{3}.\frac{1}{3}=\frac{k}{9}\)

     \(z=\frac{k}{3}.\frac{1}{2}=\frac{k}{6}\)

Bình luận (0)
PB
Xem chi tiết
CT
2 tháng 4 2017 lúc 16:32

Chọn đáp án A.

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Bình luận (0)
PB
Xem chi tiết
CT
2 tháng 5 2017 lúc 11:02

Chọn đáp án A.

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Bình luận (0)
VA
Xem chi tiết
NL
19 tháng 7 2020 lúc 14:31

\(x^2+5y^2+z^2+2yz-12y+2x+10=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)+\left(y^2+2yz+z^2\right)+\left(4y^2-12y+9\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y+z\right)^2+\left(2y-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y+z=0\\2y-3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\z=-\frac{3}{2}\\y=\frac{3}{2}\end{matrix}\right.\)

Bình luận (0)
NN
Xem chi tiết
KK
Xem chi tiết
NM
Xem chi tiết
H24
Xem chi tiết
ND
27 tháng 6 2018 lúc 7:08

a. \(x^2+4y^2+z^2=2x+12y-4z-14\)

\(\Leftrightarrow x^2+4y^2+z^2-2x-12y+4z+14=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(4y^2-12y+9\right)+\left(z^2+4z+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\)

Ta có: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(2y-3\right)^2\ge0\\\left(z+2\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y-3=0\\z+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)

b. \(x^2+3y^2+2z^2-2x+12y+4z+15=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+3\left(y^2+4y+4\right)+2\left(z^2+2z+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+3\left(y+2\right)^2+2\left(z+1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\\z+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\\z=-1\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết