Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
LL
Xem chi tiết
DT
Xem chi tiết
MT
Xem chi tiết
NT
17 tháng 7 2021 lúc 14:07

Bài 17:

1) \(3^2-x^2=\left(3-x\right)\left(3+x\right)\)

2) \(x^2-36=\left(x-6\right)\left(x+6\right)\)

3) \(y^2-1=\left(y-1\right)\left(y+1\right)\)

4) \(25-y^2=\left(5-y\right)\left(5+y\right)\)

5) \(9x^2-1=\left(3x-1\right)\left(3x+1\right)\)

6) \(\dfrac{1}{25}-4x^2=\left(\dfrac{1}{5}-2x\right)\left(\dfrac{1}{5}+2x\right)\)

7) \(9x^2-y^2=\left(3x-y\right)\left(3x+y\right)\)

8) \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)

Bình luận (1)
NT
17 tháng 7 2021 lúc 14:06

Bài 18:

1) \(\left(x-5\right)\left(x+5\right)=x^2-25\)

2) \(\left(4-x\right)\left(4+x\right)=16-x^2\)

3) \(\left(x-\dfrac{2}{3}\right)\left(x+\dfrac{2}{3}\right)=x^2-\dfrac{4}{9}\)

4) \(\left(1+2x\right)\left(1-2x\right)=1-4x^2\)

5) \(-\left(2x+3\right)\left(3-2x\right)=\left(2x+3\right)\left(2x-3\right)=4x^2-9\)

6) \(-\left(5x-3\right)\left(3+5x\right)=\left(3-5x\right)\left(3+5x\right)=9-25x^2\)

7) \(-\left(3x-\dfrac{2}{5}\right)\left(3x+\dfrac{2}{5}\right)=-\left(9x^2-\dfrac{4}{25}\right)=\dfrac{4}{25}-9x^2\)

8) \(-\left(2x-\dfrac{2}{3}\right)\left(2x+\dfrac{2}{3}\right)=-\left(4x^2-\dfrac{4}{9}\right)=\dfrac{4}{9}-4x^2\)

Bình luận (1)
H24
17 tháng 7 2021 lúc 14:09

1)\(\left(x+2\right)^2\)

2)\(\left(x+3\right)^2\)

3)\(\left(2x+1\right)^2\)

4)\(\left(3+2x\right)^2\)

5)\(\left(x-1\right)^2\)

6)\(\left(x-4\right)^2\)

7)\(\left(6-x\right)^2\)

8)\(\left(2x-3y\right)^2\)

9)\(\left(3x-1\right)^2\)

Bình luận (1)
MT
Xem chi tiết
NL
Xem chi tiết
SY
Xem chi tiết
LT
2 tháng 7 2019 lúc 17:22

Ta có: A=\(\frac{-2}{9x^2-6x+1+4}\) =\(\frac{-2}{\left(3x-1\right)^2+4}\)\(\ge\)\(\frac{-2}{4}\)=\(\frac{-1}{2}\)

Vậy giá trị nhỏ nhất của A là \(\frac{-1}{2}\)khi x=\(\frac{1}{3}\)

Bình luận (0)
NP
2 tháng 7 2019 lúc 17:23

\(A=\frac{2}{6x-5-9x^2}\)

\(A=\frac{2}{-9x^2+6x-1-4}\)

\(A=\frac{2}{-\left(9x^2-6x+1\right)-4}\)

\(A=\frac{2}{-\left(3x-1\right)^2-4}\)

Vì \(-\left(3x-1\right)^2\le0\)

\(\Rightarrow-\left(3x-1\right)^2-4\le-4\)

\(\Rightarrow\frac{2}{-\left(3x-1\right)^2-4}\ge\frac{2}{-4}\)

\(\Rightarrow A\ge\frac{-1}{2}\)

Vậy \(GTNN_A=\frac{-1}{2}\)tại \(x=\frac{1}{3}\)

Bình luận (0)
NN
2 tháng 7 2019 lúc 17:28

\(A=\frac{2}{6x-5-9x^2}=\frac{-2}{9x^2-6x+5}=\frac{-2}{\left(3x-1\right)^2+4}\)

Ta thấy ( 3x - 1 )2 \(\ge0\)nên ( 3x - 1 )2 +4 \(\ge4\) do đó \(\frac{1}{\left(3x-1\right)^2+4}\le\frac{1}{4}\) theo t/c \(a\ge b\)thì \(\frac{1}{a}\le\frac{1}{b}\)( với a , b cùng dấu ) .

Do đó \(\frac{-2}{\left(3x-1\right)^2+4}\ge\frac{-2}{4}\Rightarrow A\ge-\frac{1}{2}\)

minA = \(-\frac{1}{2}\)<=> 3x - 1 = 0 <=> x = \(\frac{1}{3}\)

Bình luận (0)
NL
Xem chi tiết
NT
Xem chi tiết
TC
7 tháng 2 2020 lúc 15:45

Kẻ: ID⊥AB,IE⊥BC,IF⊥ACID⊥AB,IE⊥BC,IF⊥AC

Xét hai tam giác vuông IDB và IEB, ta có:

\(\eqalign{

& \widehat {I{\rm{D}}B} = \widehat {IEB} = 90^\circ \cr

& \widehat {DBI} = \widehat {EBI}\left( {gt} \right) \cr} \)

BI cạnh huyền chung

⇒⇒ ∆IDB = ∆IEB (cạnh huyền, góc nhọn)

Suy ra: ID = IE (hai cạnh tương ứng)

Quảng cáo

Xét hai tam giác vuông IEC và IFC, ta có ;

\(\eqalign{

& \widehat {IEC} = \widehat {IFC} = 90^\circ \cr

& \widehat {ECI} = \widehat {FCI}\left( {gt} \right) \cr} \)

CI canh huyền chung

Suy ra:  ∆ IEC = ∆IFC (cạnh huyền, góc nhọn)

Suy ra: IE = IF (hai cạnh tương ứng)           (2)

Từ (1) và (2) suy ra: ID = IF

Xét hai tam giác vuông IDA và IFA, ta có:

            ˆIDA=ˆIFA=90∘IDA^=IFA^=90∘

            ID = IF (chứng minh trên)

            AI cạnh huyền chung

Suy ra: ∆IDA = ∆IFA (cạnh huyền, cạnh góc vuông)

Suy ra: ˆDAI=ˆFAIDAI^=FAI^ (hai góc tương ứng)

Vậy AI là tia phân giác của ˆA

Bình luận (0)
 Khách vãng lai đã xóa
H24
7 tháng 2 2020 lúc 15:46

Kẻ: ID⊥AB,IE⊥BC,IF⊥ACID⊥AB,IE⊥BC,IF⊥AC

Xét hai tam giác vuông IDB và IEB, ta có:

ˆIDB=ˆIEB=90∘ˆDBI=ˆEBI(gt)IDB^=IEB^=90∘DBI^=EBI^(gt)

BI cạnh huyền chung

⇒⇒ ∆IDB = ∆IEB (cạnh huyền, góc nhọn)

Suy ra: ID = IE (hai cạnh tương ứng)       (1)

Xét hai tam giác vuông IEC và IFC, ta có ;

ˆIEC=ˆIFC=90∘ˆECI=ˆFCI(gt)IEC^=IFC^=90∘ECI^=FCI^(gt)

CI canh huyền chung

Suy ra:  ∆ IEC = ∆IFC (cạnh huyền, góc nhọn)

Suy ra: IE = IF (hai cạnh tương ứng)           (2)

Từ (1) và (2) suy ra: ID = IF

Xét hai tam giác vuông IDA và IFA, ta có:

            ˆIDA=ˆIFA=90∘IDA^=IFA^=90∘

            ID = IF (chứng minh trên)

            AI cạnh huyền chung

Suy ra: ∆IDA = ∆IFA (cạnh huyền, cạnh góc vuông)

Suy ra: ˆDAI=ˆFAIDAI^=FAI^ (hai góc tương ứng)

Vậy AI là tia phân giác của ˆA



Read more: https://sachbaitap.com/cau-100-trang-151-sach-bai-tap-sbt-toan-lop-7-tap-1-c7a10140.html#ixzz6DFwdbF2W

Bình luận (0)
 Khách vãng lai đã xóa
BG
Xem chi tiết