Những câu hỏi liên quan
DX
Xem chi tiết
NL
29 tháng 1 2021 lúc 14:48

a.

\(a^2+a+43=k^2\) (\(k\in N;k>a\))

\(\Leftrightarrow4a^2+4a+172=4k^2\)

\(\Leftrightarrow\left(2a+1\right)^2+171=\left(2k\right)^2\)

\(\Leftrightarrow\left(2k\right)^2-\left(2a+1\right)^2=171\)

\(\Leftrightarrow\left(2k-2a-1\right)\left(2k+2a+1\right)=171\)

Pt ước số, bạn tự lập bảng

b.

\(a^2+81=k^2\)

\(\Leftrightarrow k^2-a^2=81\)

\(\Leftrightarrow\left(k-a\right)\left(k+a\right)=81\)

Bạn tự lập bảng ước số

Bình luận (1)
MP
29 tháng 1 2021 lúc 18:45

2x+80=3y

Bình luận (0)
H24
Xem chi tiết
CT
Xem chi tiết
KK
Xem chi tiết
TN
8 tháng 5 2017 lúc 13:20

ai muốn kết bn với tớ thì hãy click cho tớ nhé

Bình luận (0)
NN
Xem chi tiết
PH
Xem chi tiết
XO
22 tháng 8 2020 lúc 21:39

a) x = [((n + 1)(n + 4)].[(n + 2)(n + 3)] + 1

= (n2 + 5n + 4)(n2 + 5n + 6) + 1 

= (n2 + 5n + 5 - 1)(n2 + 5n + 5 + 1) + 1

= (n2 + 5n + 5)2 - 12 + 1 = (n2 + 5n + 5)2 (đpcm)

b) y = [n(n + 9)].[(n + 3)(n + 6)] + 81 

= (n2 + 9n).(n2 + 9n + 18) + 81

= (n2 + 9n + 9 - 9)(n2 + 9n + 9 + 9) + 81

= (n2 + 9n + 9)2 - 92 + 81 = (n2 + 9n + 9)2 (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
CQ
22 tháng 8 2020 lúc 21:48

a) \(x=\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)+1\)    

\(=\left(n+1\right)\left(n+4\right)\left(n+2\right)\left(n+3\right)+1\)  

\(=\left(n^2+5n+4\right)\left(n^2+5n+6\right)+1\)   ( 1 ) 

Đặt \(t=n^2+5n\)     

\(\left(1\right)\Leftrightarrow=\left(t+4\right)\left(t+6\right)+1\)   

\(=t^2+10+24+1\)    

\(=t^2+10t+25\)          

\(=\left(t+5\right)^2\)      

Vậy x là số chính phương 

b)  \(y=n\left(n+3\right)\left(n+6\right)\left(n+9\right)+81\)          

\(=n\left(n+9\right)\left(n+3\right)\left(n+6\right)+81\)    

\(=\left(n^2+9n\right)\left(n^2+9n+18\right)+81\)    ( 1 ) 

Đặt \(a=n^2+9n\)   

\(\Leftrightarrow\left(1\right)=a\left(a+18\right)+81\)       

\(=a^2+18a+81\)         

\(=\left(a+9\right)^2\)               

Vậy y là số chính phương 

Bình luận (0)
 Khách vãng lai đã xóa
TA
22 tháng 8 2020 lúc 21:49

a) Ta có: \(x=\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)+1\)

        \(\Leftrightarrow x=\left[\left(n+1\right)\left(n+4\right)\right].\left[\left(n+2\right)\left(n+3\right)\right]+1\)

        \(\Leftrightarrow x=\left(n^2+5n+4\right).\left(n^2+5n+6\right)+1\)

   Đặt \(a=n^2+5n+4\)\(\Rightarrow\)\(a+2=n^2+5n+6\)

   Ta lại có: \(x=a.\left(a+2\right)+1\)

           \(\Leftrightarrow x=a^2+2a+1\)

           \(\Leftrightarrow x=\left(a+1\right)^2\)

           \(\Leftrightarrow x=\left(n^2+5n+5\right)^2\)

Vậy x là số chính phương

b) Ta có: \(y=n\left(n+3\right)\left(n+6\right)\left(n+9\right)+81\)

        \(\Leftrightarrow y=\left[n\left(n+9\right)\right]\left[\left(n+3\right)\left(n+6\right)\right]+81\)

        \(\Leftrightarrow y=\left(n^2+9n\right)\left(n^2+9n+18\right)+81\)

    Đặt \(b=n^2+9n\)\(\Rightarrow\)\(b+18=n^2+9n+18\)

    Ta có: \(y=b.\left(b+18\right)+81\)

        \(\Leftrightarrow y=b^2+18b+81\)

        \(\Leftrightarrow y=\left(b+9\right)^2\)

        \(\Leftrightarrow y=\left(n^2+9n+9\right)^2\)

Vậy y là số chính phương

Chúc bn hok tốt

Bình luận (0)
 Khách vãng lai đã xóa
MC
Xem chi tiết
PA
Xem chi tiết
KH
Xem chi tiết