Những câu hỏi liên quan
H24
Xem chi tiết
NT
7 tháng 8 2016 lúc 16:52

$Dkxd:x>2\text{ hoặc } x\le -2$.

Th1: $x>2$. Khi đó:

$pt\iff (x-2)(x+2)+4\sqrt{x-2}\sqrt{\frac{(x+2)(x-2)}{x-2}}=-3$

$\iff (x-2)(x-2)+4\sqrt{(x-2)(x+2)}+3=0\iff (\sqrt{(x-2)(x+2)}+1)(\sqrt{(x-2)(x+2)}+3)=0(1)$.

Do $\sqrt{(x-2)(x+2)}\ge 0$ nên $VT(1)>0=VP(2)\implies $ vô nghiệm.

Th2: $x\le -2\implies 2-x\ge 0;-x-2>0$.

Khi đó: $pt\iff (2-x)(-x-2)-4(2-x)\sqrt{\frac{-x-2}{2-x}}+3=0$

$\iff (2-x)(-x-2)-4\sqrt{(2-x)(-x-2)}+3=0\iff (\sqrt{(2-x)(-x-2)-1})(\sqrt{(2-x)(-x-2)}-3)=0$.

$\iff \sqrt{(x-2)(x+2)}=1\text{ hoặc } \sqrt{(x-2)(x+2)}=3$.

$\iff x=5(l)\text{ hoặc} x=13(l)$.

Vậy phương trình đã cho vô nghiệm

Bình luận (0)
TV
Xem chi tiết
VT
8 tháng 2 2017 lúc 9:45

PT : \(x+\frac{2a\left(x+a\right)}{x}=\frac{a^2}{x}.\)

Phương trình đã cho tương đương với \(x^2+2a\left|x+a\right|-a^2=0\) với \(x\ne0\)

\(\left|x+a\right|=\left\{\begin{matrix}x+a\left(x\ge-a\right)\\-\left(x+a\right)\left(x< -a\right)\end{matrix}\right.\)

TH1 : Với \(x< -a\) : \(x^2-2a\left(x+a\right)-a^2=0\) với \(x\ne0\).

\(\Leftrightarrow x^2-2ax-3a^2=0\)

\(\Leftrightarrow\left(x+a\right)\left(x-3a\right)=0\) với \(x\ne0.\)

\(x=3a< -a\Leftrightarrow x=3a\) với \(a< 0.\)

TH 2 : Với \(x\ge-a\) : \(x^2+2a\left(x+a\right)-a^2=0\) với \(x\ne0\)

\(\Leftrightarrow x^2+2ax+a^2=0\)

\(\Leftrightarrow\left(x+a\right)^2=0\Leftrightarrow x=-a\)

Vậy ..............

Bình luận (0)
TD
Xem chi tiết
MN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
20 tháng 8 2018 lúc 8:32

\(\frac{m^2\left[\left(x+2\right)^2-\left(x-2\right)^2\right]}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)

\(\Leftrightarrow\frac{m^2\left(x^2+4x+4-x^2+4x-4\right)}{8}-4x=\)\(m^2-2m+1+6m+3\)

\(\Leftrightarrow\frac{m^2.8x}{8}-4x=m^2+4m+4\)

\(\Leftrightarrow m^2x-4x=m^2+4m+4\)

\(\Leftrightarrow x\left(m^2-4\right)=\left(m+2\right)^2\) \(\left(1\right)\)

+) Nếu  \(m^2-4\ne0\Leftrightarrow m^2\ne4\Leftrightarrow m\ne\pm2\)

 Phương trình có nghiệm duy nhất  \(x=\frac{\left(m+2\right)^2}{m^2-4}=\frac{\left(m+2\right)^2}{\left(m+2\right)\left(m-2\right)}=\frac{m+2}{m-2}\)

+) Nếu  \(m=2\)

\(\left(1\right)\Leftrightarrow x\left(2^2-4\right)=\left(2+2\right)^2\)

         \(\Leftrightarrow0=16\) ( vô lí )

\(\Rightarrow\)Phương trình trên vô nghiệm

+) Nếu  \(m=-2\)

\(\left(1\right)\Leftrightarrow x\left[\left(-2\right)^2-4\right]=\left(-2+2\right)^2\)

\(\Leftrightarrow0=0\)( đúng )

\(\Rightarrow\)Phương trình có nghiệm đúng với mọi x 

Vậy : - Nếu  \(m\ne\pm2\)phương trình có nghiệm duy nhất  \(x=\frac{m+2}{m-2}\)

         - Nếu m = 2 thì phương trình vô nghiệm

         - Nếu m = -2 thì phương trình có nghiệm đúng với mọi x 

Bình luận (0)
CC
Xem chi tiết
HQ
1 tháng 8 2016 lúc 9:17

\(\text{Đ}K:x>2\) hoặc \(x\le-2\)

\(A=\left(x+2\right)\left(x-2\right)+4\left(x-2\right)\sqrt{\frac{x+2}{x-2}}=-3\)

\(A=\left(x^2-4\right)+4.\sqrt{x-2}.\sqrt{x+2}=-3\)

\(A=\left(x^2-4\right)+4\sqrt{x^2-4}=-3\)

\(A=\sqrt{x^2-4}\left(1-4\right)=-3\)

\(A=\sqrt{x^2-4}.\left(-3\right)=-3\)

\(A=\sqrt{x^2-4=1}\)

\(A=x^2-4=1\)

\(A=x^2=5\)

\(A=x=\orbr{\begin{cases}\sqrt{5}\\-\sqrt{5}\end{cases}}\)

Vây \(x=\orbr{\begin{cases}-\sqrt{5}\\\sqrt{5}\end{cases}}\)

Bình luận (0)
VD
Xem chi tiết
HH
Xem chi tiết
H24
20 tháng 1 2017 lúc 21:38

2a^4=(1-a)^2=a^2-2a+1

\(A=\frac{2a-3}{\sqrt{2\left(a^2-4a+4\right)}+2a^2}=\frac{2a-3}{\sqrt{2}!\left(a-2\right)!+2a^2}\)a> 2 không thể là nghiệm=> a<2

\(A=\frac{2a-3}{\sqrt{2}\left(2-a\right)+2a^2}=\frac{2a-3}{2a^2-\sqrt{2}a+2\sqrt{2}}=\frac{2a-3}{\sqrt{2}\left(\sqrt{2}a^2-a-1+3\right)}\)

\(A=\frac{2a-3}{\sqrt{2}\left(3\right)}\)

Bình luận (0)
HH
20 tháng 1 2017 lúc 21:56

bạn giải thích rõ hơn được không ?

Bình luận (0)
H24
20 tháng 1 2017 lúc 22:02

a là nghiệm =>\(\sqrt{2}a^2+a-1=0\Rightarrow\sqrt{2}a^2=1-a\\\)\(2a^4=\left(1-a\right)^2=1^2-2a+a^2\)

Thay 2a^4=...vào ==> 

Bình luận (0)