Những câu hỏi liên quan
PB
Xem chi tiết
CT
8 tháng 8 2019 lúc 9:56

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Trong ΔABD ta có ∠D1 là góc ngoài tại đỉnh D

∠D1 = ̂B + ∠A1 (tính chất góc ngoài của tam giác)

Trong ΔADC ta có ∠D2 là góc ngoài tại đỉnh D

∠D2 = ̂C + ∠A2 (tính chất góc ngoài của tam giác)

Ta có: ∠B > ∠C (gt); ∠A1 = ∠A2 (gt)

⇒∠D1 - ∠D2 = (B + ∠A1) - (C + ∠A2) = ∠B - ∠C = 20o

Lại có: ∠D1 + ∠D2 = 180o (hai góc kề bù)

⇒∠D1 = (180o + 20o):2 = 100o

⇒∠D1 = (100o - 20o) = 80o

Bình luận (0)
GM
Xem chi tiết
NT
21 tháng 2 2022 lúc 13:09

Đặt \(\widehat{ADC}=b;\widehat{ADB}=a\)

Ta có: \(a+\widehat{B}+\widehat{BAD}=b+\widehat{C}+\widehat{CAD}\)

\(\Leftrightarrow a+\widehat{C}+20^0=b+\widehat{C}\)

\(\Leftrightarrow a-b=-20\)

mà a+b=180

nên 2a=160

=>a=80

=>b=100

Bình luận (0)
AM
Xem chi tiết
PN
Xem chi tiết
PB
Xem chi tiết
CT
22 tháng 6 2017 lúc 5:15

Bình luận (0)
VQ
Xem chi tiết
AP
Xem chi tiết
QT
Xem chi tiết
H24
Xem chi tiết
NM
24 tháng 12 2021 lúc 21:28

Xét tam giác ABC: \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\Rightarrow\widehat{B}+\widehat{C}=180^0-\widehat{A}\)

Mặt khác: \(\widehat{B}-\widehat{C}=18^0\Rightarrow\left\{{}\begin{matrix}\widehat{B}=\dfrac{180^0-\widehat{A}+18^0}{2}=99^0-\dfrac{\widehat{A}}{2}\\\widehat{C}=99^0+\dfrac{\widehat{A}}{2}-18^0=81^0-\dfrac{\widehat{A}}{2}\end{matrix}\right.\)

Xét tam giác ABD: \(\widehat{ADC}=\widehat{BAD}+\widehat{B}=\dfrac{\widehat{A}}{2}+99^0-\dfrac{\widehat{A}}{2}=99^0\)

\(\widehat{ABD}=180^0-\widehat{ADC}=81^0\)

Bình luận (0)