Tìm hai số tự nhiên,biết tổng của chúng bằng 84,và ƯCLN của chúng là 6
Tìm hai số tự nhiên . Biết rằng tổng của chúng bằng 66 , ƯCLN của chúng bằng 6 , đồng thời có một số chia hết cho 5
Tìm hai số tự nhiên , biết hiệu của chúng bằng 84 và ƯCLN của chúng bằng 12
Tìm hai số tự nhiên , biết tích của chúng bằng 864 và ƯCLN của chúng bằng 6
Help me !
a) Tìm hai số tự nhiên , biết rằng tổng của chúng bằng 84, ƯCLN của chúng bằng 6.
b) Tìm hai số tự nhiên có tích bằng 300, ƯCLN bằng 5.
c) Tìm hai số tự nhiên biết rằng ƯCLN của chúng bằng 10, BCNN của chúng bằng 900.
a, Gọi hai số tự nhiên cần tìm là a và b
Ta có : \(a=6.k_1;b=6.k_2\)
Trong đó : \(ƯCLN\left(k_1,k_2\right)=1\)
Mà : \(a+b=84\Rightarrow6.k_1+6.k_2=84\)
\(\Rightarrow6\left(k_1+k_2\right)=84\Rightarrow k_1+k_2=84\div6=14\)
+) Nếu : \(k_1=1\Rightarrow k_2=13\Rightarrow\begin{cases}a=6\\b=78\end{cases}\)
+)Nếu : \(k_1=3\Rightarrow k_2=11\Rightarrow\begin{cases}a=18\\b=66\end{cases}\)
+)Nếu : \(k_1=5\Rightarrow k_2=9\Rightarrow\begin{cases}a=30\\b=54\end{cases}\)
Vậy ...
b, Tương tự câu a,
c, Gọi hai số tự nhiên cần tìm là a và b
Vì : \(ƯCLN\left(a,b\right)=10;BCNN\left(a,b\right)=900\)
\(\RightarrowƯCLN\left(a,b\right).BCNN\left(a,b\right)=a.b=900.10=9000\)
Phần còn lại giống câu a và câu b tự làm
1. Tìm hai số tự nhiên, biết hiệu của chúng bằng 84 và ƯCLN của chúng bằng 12
2. Tìm hai số tự nhiên, biết tích của chúng bằng 864 và ƯCLN cửa chúng bằng 6
vạy ta có a=12 x m;b=12 x q và ưcln của m:q =1 ta có a-b=84 hay m x 12 - 12 x q =84 =12 x (m-q) = 84 và m>p vậym-q=84:12=7 mà ucln cua mva q la 1 vay m=8 và q=1 hoặc m=9 và q=2;..................... thay so tinh tiep
1) Hai số đó là 96 và 12
2)Hai số đó là 144 và 6
a) Tìm số tự nhiên n sao cho 18n+3 chia hết cho 7.
b) Tìm hai số tự nhiên, biết rằng tổng của chúng bằng 84, ƯCLN của chúng bằng 6.
c) Tìm hai số tự nhiên có tích bằng 300, ƯCLN bằng 5.
d) Tìm hai số tự nhiên biết rằng ƯCLN của chúng bằng 10, BCNN của chúng bằng 900.
Câu 10:Tìm hai số tự nhiên biết tổng của chúng bằng 84,ƯCLN của chúng bằng 6
Gọi hai số cần tìm là a và b. Giả sử a ≤ b. Ta có :
ƯCLN(a ; b) = 6 ⇒ a = 6m và b = 6n (m,n ∈ N* và m ≥ n ; m,n nguyên tố cùng nhau)
Do đó a + b = 6m + 6n = 6.(m + n) = 84
⇒ m + n = 14. Vì m ≥ n và m,n ∈ N* và m,n nguyên tố cùng nhau nên ta có bảng sau :
m | 13 |
| 11 |
| 9 |
|
|
a | 78 |
| 66 |
| 54 |
|
|
n | 1 |
| 3 |
| 5 |
|
|
b | 6 |
| 18 |
| 30 |
|
|
Vậy (a;b) ∈ {(78;6);(66;18);(54;30)}
Tìm hai số tự nhiên biết rằng tổng của chúng bằng 84, ƯCLN của chúng bằng 6.
a+b=84 (a<b; a,b thuộc N*)
UCLN(a,b)=6 =>
{a=6m
{b=6m
(m,n)=1 và m,n thuộc N*
a+b=84 => 6m+6n=84 => m+n=14
*m=1=> n=13 => a=6, b=78
*m=3=> n=11 => a=18, b=66
*m=5 => n=9 => a= 30, b=54
Vậy (a,b) = (6,78); (18,66); (30,54)
UCLN(36,48)=12 nha
Gọi hai số cần tìm là a và b. Giả sử a \(\le\) b. Ta có :
ƯCLN(a ; b) = 6 \(\Rightarrow\) a = 6m và b = 6n (m,n \(\in\) N* và m \(\ge\) n ; m,n nguyên tố cùng nhau)
Do đó a + b = 6m + 6n = 6.(m + n) = 84
\(\Rightarrow\) m + n = 14. Vì m \(\ge\) n và m,n \(\in\) N* và m,n nguyên tố cùng nhau nên ta có bảng sau :
m | 13 | 11 | 9 | ||||
a | 78 | 66 | 54 | ||||
n | 1 | 3 | 5 | ||||
b | 6 | 18 | 30 |
Vậy (a;b) \(\in\) {(78;6);(66;18);(54;30)}
Gọi hai số cần tìm là a và b. Giả sử a ≤ b. Ta có :
ƯCLN(a ; b) = 6 $\Rightarrow$⇒ a = 6m và b = 6n (m,n ∈ N* và m \(\le\) n ; m,n nguyên tố cùng nhau)
Do đó a + b = 6m + 6n = 6.(m + n) = 84
⇒ m + n = 14. Vì m \(\le\) n và m,n $\in$∈ N* và m,n nguyên tố cùng nhau nên ta có bảng sau :
n | 13 | 11 | 9 | ||||
b | 78 | 66 | 54 | ||||
m | 1 | 3 | 5 | ||||
a | 6 | 18 | 30 |
Vậy (b;a) ∈ {(78;6);(66;18);(54;30)}
a) Tìm số tự nhiên n sao cho 18n + 3 chia hết cho 7
b) Tìm hai số tự nhiên,biết rằng tổng của chúng bằng 84,ƯCLN của chúng bằng 6
c) Tìm hai số tự nhiên có tích bằng 300,ƯCLN bằng 5
d) Tìm hai số tự nhiên biết rằng ƯCLN của chúng bằng 10,BCNN của chúng bằng 900
a) n=7k+1 ( \(k\in N\))
b) 18 va 66 hoac 6 va 78 hoac 30 va 54
c) 15 va 20 hoac 5 va 60
d) 10 va 900 hoac 20 va 450 hoac 180 va 50 hoac 100 va 90
Bài 1 . Tìm hai số tự nhiên , biết rằng tổng của chúng bằng 84 , ƯCLN của chúng bằng 6.
Gọi hai số cần tìm là a và b. Giả sử a ≤ b. Ta có :
ƯCLN(a ; b) = 6 ⇒ a = 6m và b = 6n (m,n ∈ N* và m ≥ n ; m,n nguyên tố cùng nhau)
Do đó a + b = 6m + 6n = 6.(m + n) = 84
⇒ m + n = 14. Vì m ≥ n và m,n ∈ N* và m,n nguyên tố cùng nhau : " Đến đây bạn tự kẻ bảng nha "
Vậy (a;b) ∈ {(78;6);(66;18);(54;30)}
tk cho mk nha
Gọi hai số đó là : a và b
Vì ƯCLN ( a , b ) = 6
=> a = 6x ; b = 6y ; ( x , y ) = 1
Mà a + b = 84
Thay a = 6x ; b = 6y vào a + b = 84 ta được
6x + 6y = 84
6 . ( x + y ) = 84
x + y = 84 : 6
x + y = 14
Mà ( x , y ) = 1 => ( x , y ) = ( 1 ; 13 ) ; ( 13 ; 1 ) ; ( 11 ; 3 ) ; ( 3 ; 11 ) ; ( 5 ; 9 ) ; ( 9 ; 5 )
x | 1 | 13 | 11 | 3 | 5 | 9 |
a | 6 | 78 | 66 | 18 | 30 | 54 |
y | 13 | 1 | 3 | 11 | 9 | 5 |
b | 78 | 6 | 18 | 66 | 54 | 30 |
gọi hai số tự nhiên đó là a và b , a nhỏ hơn hoặc bằng b
theo bài ra : a+b=84 ; (a,b)=6
(a,b)=6=>a=6m, b=6n (m;nthuộc N ;(m,n)=1 ;m nhỏ hơn hoặc bằng n)
=>a+b=6m+6n=>84=6(m+n)=>14=m+n
lập bảng giá trị:
m 1 3 5
n 13 11 9
a(6m) 6 18 30
b(6n) 78 66 54
a+b 84 84 84
vậy 2 số tự nhiên cần tìm là 6 và 78; 78 và 6;18 và 66; 66 và 18;30 và 54; 54 và 30
Tìm hai số tự nhiên biết rằng tổng của chúng bằng 84, ƯCLN của chúng bằng 6.
gọi 2 số cần tìm là a và b
vì ƯCLN(a,b)=6
nên a=6m
b=6n (m>n và m, n là 2 số nguyên tố cùng nhau)
có a+b=84
suy ra 6m+6n=84
6(m+n)=84
Vậy m+n=14
vì ƯCLN(m,n)=1
nên m+n=13+1=11+3=9+5
sau đó thây các giá trị của m và n vào là được
chúc bạn hok giỏi nha
mik nha
Gọi hai số đó là : a và b
Vì ƯCLN ( a , b ) = 6
=> a = 6x ; b = 6y ; ( x , y ) = 1
Mà a + b = 84
Thay a = 6x ; b = 6y vào a + b = 84 ta được
6x + 6y = 84
6 . ( x + y ) = 84
x + y = 84 : 6
x + y = 14
Mà ( x , y ) = 1 => ( x , y ) = ( 1 ; 13 ) ; ( 13 ; 1 ) ; ( 11 ; 3 ) ; ( 3 ; 11 ) ; ( 5 ; 9 ) ; ( 9 ; 5 )
x | 1 | 13 | 11 | 3 | 5 | 9 |
a | 6 | 78 | 66 | 18 | 30 | 54 |
y | 13 | 1 | 3 | 11 | 9 | 5 |
b | 78 | 6 | 18 | 66 | 54 | 30 |
Gọi 2 số cần tìm là a và b.Giả sử a > b
ƯCLN(a,b) = 6
a = 6m ; b = 6n
m > n ; (m,n) = 1
a+b=6m+6n=6(m+n) = 84
m+n=14
Ta có các TH sau :
m = 13 ; n = 1
m = 11 ; n = 3
...
Còn các TH khác bạn tự tìm nhé