Chứng tỏ rằng hiệu 19831983-19171917 chia hết cho 10
Bài 1: Tìm số dư trong phép chia 31996 cho 13
Bài 2: Chứng minh rằng (21996-2) : 31
Bài 3: Chứng minh rằng 0,3(19831983-19171917) là một số nguyên
Bài 4 : Chứng minh rằng :
a) 24n-1 chia hết cho 15 b) 270+370 chia hết cho 13
c) 19801930+19451975+1 chia hết cho 7 d) 122n+1-11n+2 chia hết cho 133
e) 22225555+55552222 chia hết cho 7
g, 6^1001 + 1 chia hết cho 7
Bài 5 : Tìm số dư trong phép chia :
a) Chia 43624362 cho 11 b) Chia 35150 cho 425 c) Chia 8! Cho 11
GIÚP TỚ NKE EVERYONE. I WILL TICK FOR YOU.
Đêm ùi mà còn nhờ 1 đống zậy muốn xỉu lun oy
Toán khó phải có người lo mink ko lo đc mấy bn lo dùm mink nka
10 . 12 Chứng tỏ rằng nếu hai số chia hết cho 5 có cùng số dư thì hiệu của chúng chia hết cho 5
đặt 2 số đó là :
5x + y và 5z + y
ta có hiệu của chúng là : 5x + y - ( 5z + y ) = 5 ( x - z ) chia hết cho 5
chứng tỏ rằng : a=10! + 1.3.5...9 chia hết cho 5
chứng tỏ rằng : b=10! + 1.3.5...9 + 2009 chia hết cho 2
chứng tỏ rằng : c= 17^17 + 13^13 chia hết cho 2 và 5
chứng tỏ rằng : d= 17^17 - 13^13 chia hết cho 2 nhưng ko chia hết cho 5
Bài 1: Tìm số dư trong phép chia 31996 cho 13
Bài 2: Chứng minh rằng (21996-2) : 31
Bài 3: Chứng minh rằng 0,3(19831983-19171917) là một số nguyên
Bài 4 : Chứng minh rằng :
a) 24n-1 chia hết cho 15 b) 270+370 chia hết cho 13
c) 19801930+19451975+1 chia hết cho 7 d) 122n+1-11n+2 chia hết cho 133
e) 22225555+55552222 chia hết cho 7
g, 6^1001 + 1 chia hết cho 7
Bài 5 : Tìm số dư trong phép chia :
a) Chia 43624362 cho 11 b) Chia 35150 cho 425 c) Chia 8! Cho 11
Bài 6 : Chứng minh rằng : 14k+24k+34k+44k không chia hết cho 5 với mọi k N
Bài 7 : Chứng minh rằng nếu n không chia hết cho 3 thì 32n+3n+1 chia hết cho13
Chứng tỏ rằng hiệu 3338-910chia hết cho 2 và 5
* Ta có \(333\equiv1\left(mod2\right)\Rightarrow333^8\equiv1\left(mod2\right)\); \(9\equiv1\left(mod2\right)\Rightarrow9^{10}\equiv\left(mod2\right)\)
\(\Rightarrow333^8-9^{10}⋮2\)
* Ta có \(333\equiv3\left(mod5\right)\Rightarrow333^8\equiv6561\equiv1\left(mod5\right)\);\(9\equiv-1\left(mod5\right)\Rightarrow9^{10}\equiv1\left(mod5\right)\)
\(\Rightarrow333^8-9^{10}⋮5\)
chứng tỏ rằng 105 = 35 chia hết cho 9 và 5
Hướng dẫn : Áp dụng dấu hiệu chia hết cho 5 và dấu hiệu chia hết cho 5 và dấu hiệu chia hết cho 9
Giải :
..........................................................................................................
..........................................................................................................
..........................................................................................................
Không tính tổng hoặc hiệu,chứng tỏ rằng :
a) (145689-259872) chia hết cho 3
b) (145689+259846) chia hết cho 5
c) (14.29+32.17) chia hết cho 10
d) (105-1) chia hết cho 9
1 chứng tỏ rằng trong 1 phép tính trừ tổng của số bị trừ và hiệu bao giờ cũng chia hết cho 2
2 hai số không chia hết cho 3 khi chia cho 3 được những số dư khác nhau
a chưng tỏ rằng tổng cùa hai số đó chia hết cho 3
b chứng tỏ rằng hiệu của hai số đó chia hết cho 3
a) chứng tỏ rằng (101234+2)chia hết cho 3
b)chứng tỏ rằng (10789 +8) chia hết cho 9
a)101234+2)=10+2=12
Vì 12 chia hết cho 3 nên (101234+2)chia hết cho 3
b)(10789+8)=10+8=18
Vì 18 chia hết 9 nên (10799+8) chia hết cho 9