Những câu hỏi liên quan
GB
Xem chi tiết
EC
5 tháng 8 2019 lúc 16:24

Ta có: A = x2 - 5x + 1 = (x2 - 5x + 25/4) - 21/4 = (x - 5/2)2 - 21/4

Ta luôn có: (x - 5/2)2 \(\ge\)\(\forall\)x

=> (x - 5/2)2 - 21/4 \(\ge\)-21/4 \(\forall\)x

Dấu "=" xảy ra <=> x -5/2 = 0 <=> x = 5/2

Vậy Min A = -21/4 tại  x = 5/2

Ta có: B = -x + 3x + 1 = -(x - 3x  + 9/4) + 13/4 = -(x - 3/2)2 + 13/4

Ta luôn có: -(x - 3/2)2 \(\le\)\(\forall\)x

=> -(x - 3/2)2 + 13/4 \(\le\)13/4 \(\forall\)x

Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x  = 3/2

Vậy Max B = 13/4 tại x = 3/2

(xem lại đề)

Bình luận (0)
PN
Xem chi tiết
DL
28 tháng 10 2016 lúc 22:39

A=x2+10x+35=x2+10x+25+10=x2+2*x*5+52+10=(x+5)2+10

Ta có: (x+5)2>=0(với mọi x)

=> (x+5)2+10>=10(với mọi x)

hay A>=10(với mọi x)

Do đó, GTNN của A là 10 khi: (x+5)2=0

x+5=0

x=0-5

x=-5

Vậy GTNN của A là 10 tại x=-5

Bình luận (0)
PN
28 tháng 10 2016 lúc 22:42

thanks bạn ạ

Bình luận (0)
H24
29 tháng 10 2016 lúc 6:00

Câu này dễ , ko cần phải làm phức tạp như bạn trên

Bình luận (0)
NT
Xem chi tiết
LN
Xem chi tiết
KS
15 tháng 6 2018 lúc 16:03

1) \(B=\left|x+y\right|+\left|x-3\right|+2\)

Ta có: \(\orbr{\begin{cases}\left|x+y\right|\ge0\forall x;y\\\left|x-3\right|\ge0\forall x\end{cases}}\Rightarrow\left|x+y\right|+\left|x-3\right|+2\ge2\forall x;y\)

\(B=2\Leftrightarrow\orbr{\begin{cases}\left|x-3\right|=0\\\left|x+y\right|=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+y=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3\\y=-x\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3\\y=-3\end{cases}}}\)

KL:............................

Bình luận (0)
PT
Xem chi tiết
PT
27 tháng 2 2022 lúc 15:40

m.n ơi giúp mk 1 hoặc 2 câu đc ko ạ mk cần gấp lắm mà mk ko bt cách lm

Bình luận (0)
NL
Xem chi tiết
CK
Xem chi tiết
NL
24 tháng 12 2020 lúc 22:16

\(A=4\left(x-1\right)+\dfrac{25}{x-1}+4\ge2\sqrt{\dfrac{100\left(x-1\right)}{x-1}}+4=24\)

Dấu "=" xảy ra khi \(x=\dfrac{7}{2}\)

Bình luận (1)
LP
Xem chi tiết
TN
22 tháng 11 2015 lúc 20:29

mình biết nè .nhưng đợi chút nhé

Bình luận (0)
VO
Xem chi tiết
CM
28 tháng 3 2019 lúc 18:53

\(a.\)\(A=|x|+|2014-x|\ge|x+2014-x|=2014\)

Dấu '=' xảy ra khi\(x\left(2014-x\right)>0\)

TH1:\(\hept{\begin{cases}x>0\\2014-x>0\end{cases}\Leftrightarrow0< x< 2014\left(n\right)}\)

TH2:\(\hept{\begin{cases}x< 0\\2014-x< 0\end{cases}\left(l\right)}\)

Vậy \(A_{min}=2014\)khi\(0< x< 2014\)

\(b.\)\(|x^2+|x-1||=x^2+2\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+|x-1|=-x^2-2\\x^2+|x-1|=x^2+2\end{cases}\Leftrightarrow\orbr{\begin{cases}|x-1|=-2x^2-2\left(l\right)\\|x-1|=2\left(n\right)\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=-2\\x-1=2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}}\)

V...

Bình luận (0)