Những câu hỏi liên quan
NT
Xem chi tiết
MB
4 tháng 9 2016 lúc 14:19

\(\frac{a}{b}\) và \(\frac{a+2005}{b+2005}\)

Ta so sánh:

a( b+2005 ) và b( a + 2005)

hay ab + a2005 và ba + b2005

nghĩa là cần so sánh:

a2005 và b2005

Nếu a > b 

\(\Rightarrow\) a2005 > b2005

\(\Rightarrow\) a(b +2005) > b(a + 2005)

\(\Rightarrow\frac{a}{b}>\frac{a+2005}{b+2005}\)

Nếu a < b

\(\Rightarrow\) a2005 < b2005

\(\Rightarrow\) a(b +2005) < b(a +2005)

\(\Rightarrow\) \(\frac{a}{b}< \frac{a+2005}{b+2005}\)

Nếu a = b

\(\Rightarrow\frac{a}{b}=1=\frac{a+2005}{b+2005}\)

 

 

 

Bình luận (2)
HH
Xem chi tiết
PN
2 tháng 9 2016 lúc 20:04

a/b < a+2001/b+2001

Bình luận (0)
MT
2 tháng 9 2016 lúc 20:17

Ta có: \(\frac{a}{b}=\frac{a.\left(b+2001\right)}{b.\left(b+2001\right)}=\frac{ab+2001a}{b^2+2001b}\) 

         \(\frac{a+2001}{b+2001}=\frac{b.\left(a+2001\right)}{b.\left(b+2001\right)}=\frac{ab+2001b}{b^2+2001b}\)

*TH1: a=b

=>\(\frac{a}{b}=\frac{a+2001}{b+2001}=1\)

*TH2: a<b

=>ab+2001a<ab+2001b

=>\(\frac{ab+2001a}{b^2+2001b}< \frac{ab+2001b}{b^2+2001b}\)

=>\(\frac{a}{b}< \frac{a+2001}{b+2001}\)

TH3:a>b

=>ab+2001a>ab+2001b

=>\(\frac{ab+2001a}{b^2+2001b}>\frac{ab+2001b}{b^2+2001b}\)

=>\(\frac{a}{b}>\frac{a+2001}{b+2001}\)

Bình luận (0)
NC
9 tháng 8 2017 lúc 19:12

Ta có: a(b + 2001) = ab + 2001a

         : b(a + 2001) = ab + 2001b

-Trường hợp 1: Nếu a > b \(\Rightarrow\)2001a > 2001b

 \(\Rightarrow\)ab + 2001a > ab + 2001b \(\Rightarrow\)\(\frac{a}{b}>\frac{a+2001}{b+2001}\)

-Trường hợp 2: Nếu a < b, tương tự ta có: \(\frac{a}{b}< \frac{a+2001}{b+2001}\)

-Trường hợp 3: Nếu a = b \(\Rightarrow\) \(\frac{a}{b}=\frac{a+2001}{b+2001}\)

Chúc bạn học tốt ^^!

Bình luận (0)
TN
Xem chi tiết
GV
23 tháng 8 2014 lúc 6:44

Qui đồng mẫu số:

\(\frac{a}{b}=\frac{a\left(b+2001\right)}{b\left(b+2001\right)}=\frac{ab+2001a}{b\left(b+2001\right)}\)

\(\frac{a+2001}{b+2001}=\frac{\left(a+2001\right)b}{\left(b+2001\right)b}=\frac{ab+2001b}{b\left(b+2001\right)}\)

Vì b>0 nên mẫu số của hai phân số trên dương. Chỉ cần so sánh tử số.

So sánh ab + 2001a với ab + 2001b

- Nếu a < b => tử sổ phân số thứ nhất < tử số phân số thứ hai

  => \(\frac{a}{b}\frac{a+2001}{b+2001}\)

 

Bình luận (0)
AS
26 tháng 10 2014 lúc 17:44

gv là cô giáo đấy. Trang cá nhân của gv đề là học tại đại học sư phạm mà k thấy seo

Bình luận (0)
TN
17 tháng 12 2014 lúc 20:47

Pạn unchiha itachi hỗn láo wá -_- Hỏi thật pạn có họk ko dzậy ? Gv là giáo vin đó :< Pạn nói như dzậy là sai rùi pạn nên xin lỗi gv đi

Bình luận (0)
TN
Xem chi tiết
NT
25 tháng 5 2016 lúc 18:57

Qui đồng mẫu số:

a/b = a(b+2001) / b(b+2001) = ab + 2001a /  b(b+2001)

a+2001 / b + 2001  =  (a+2001)b / (b + 2001)b  = ab + 2001b / b(b+2001) 

Vì b>0 nên mẫu số của hai phân số trên dương. Chỉ cần so sánh tử số.

So sánh ab + 2001a với ab + 2001b

- Nếu a < b => tử sổ phân số thứ nhất < tử số phân số thứ hai

  =>a/b < a+2001/b+2001

- Nếu a = b => hai phân số bằng nhau = 1

- Nếu a > b => Tử số phân số thứ nhất lớn hơn tử số phân số thứ hai

 

=> a/b > a+2001/ b +2001

Bình luận (2)
HH
Xem chi tiết
LC
5 tháng 9 2015 lúc 22:14

Ta có:\(\frac{a}{b}=\frac{a.\left(b+2012\right)}{b.\left(b+2012\right)}=\frac{ab+a.2012}{b.\left(b+2012\right)}\)

\(\frac{a+2012}{b+2012}=\frac{b.\left(a+2012\right)}{b.\left(b+2012\right)}=\frac{ab+b.2012}{b.\left(b+2012\right)}\)

Vì a<0<b=>a<b=>a.2012<b.2012

=>\(\frac{ab+a.2012}{b.\left(b+2012\right)}

Bình luận (0)
NT
Xem chi tiết
FF
23 tháng 8 2016 lúc 16:34

 Xét 3 TH : 
1) a < b 
Khi đó ta có ab + 2001a < ab + 2001b hay a(b+2001) < b(a+2001) 
Chia 2 vế cho b(b+2001) ta được a/b < (a+2001)/(b+2001) 

2) a = b ---> a/b = (a+2001)/(b+2001) = 1 

3) a > b 
Khi đó ta có ab + 2001a > ab + 2001b hay a(b+2001) > b(a+2001) 
Chia 2 vế cho b(b+2001) ta được a/b > (a+2001)/(b+2001) 

Tóm lại 
a/b < (a+2001)/(b+2001) nếu a < b 
a/b = (a+2001)/(b+2001) nếu a = b 
a/b > (a+2001)/(b+2001) nếu a > b

Bình luận (0)
NY
Xem chi tiết
TN
13 tháng 6 2019 lúc 8:45

E tham khảo ở câu hỏi tương tự nhé

Bình luận (0)
H24
13 tháng 6 2019 lúc 8:53

#)Giải :

Quy đồng mẫu số : 

\(\frac{a}{b}=\frac{a\left(b+2001\right)}{b\left(b+2001\right)}=\frac{ab+2001a}{b\left(b+2001\right)}\)

\(\frac{a+2001}{b+2001}=\frac{\left(a+2001\right)b}{\left(b+2001\right)b}=\frac{ab+2001b}{b\left(b+2001\right)}\)

Vì b > 0 nên mẫu số của hai phân số trên dương. Chỉ cần so sánh tử số 

So sánh ab + 2001a và ab + 2001b

- Nếu a < b => tử số của phân số thứ nhất < tử số của phân số thứ hai

=> \(\frac{a}{b}< \frac{a+2001}{b+2001}\)

- Nếu a = b => hai phân số bằng nhau và bằng 1

- Nếu a > b => tử số của phân số thứ nhất > tử số của phân số thứ hai

=> \(\frac{a}{b}>\frac{a+2001}{b+2001}\)

Bình luận (0)
TN
13 tháng 6 2019 lúc 8:53

Quy đồng mẫu số:

\(\frac{a}{b}=\frac{a\left(b+2001\right)}{b\left(b+2001\right)}=\frac{ab+2001a}{b\left(b+2001\right)}\)

\(\frac{a+2001}{b+2001}=\frac{\left(a+2001\right)b}{\left(b+2001\right)b}=\frac{ab+2001b}{b\left(b+2001\right)}\)

Vì b > 0 nên mẫu của 2 phân số trên đều dương. Chỉ cần so sánh tử số so sánh ab+2001a với ab+2001b.

- Nếu a tử số phân số thứ 1 < tử số phân số thứ 2.

\(\Rightarrow\frac{a}{b}=\frac{a+2001}{b+2001}\)

- Nếu a = b thì 2 phân số bằng nhau và bằng 1.

Nếu a > b thì tử số phân số thứ nhất lớn hơn tử số phân số thứ 2.

\(\Rightarrow\frac{a}{b}>\frac{a+2001}{b+2001}\)

Bình luận (0)
DL
Xem chi tiết
DN
9 tháng 6 2016 lúc 10:26

Ta có: \(\frac{a}{b}=\frac{a\left(b+2016\right)}{b\left(b+2016\right)}=\frac{ab+2016a}{b\left(b+2016\right)}\) ; 

 \(\frac{a+2016}{b+2016}=\frac{b\left(a+2016\right)}{b\left(b+2016\right)}=\frac{ab+2016b}{b\left(b+2016\right)}\)

Với a = b thì \(\frac{a}{b}=\frac{a+2016}{b+2016}\)

Với a < b thì \(\frac{a}{b}< \frac{a+2016}{b+2016}\)

Với a > b thì \(\frac{a}{b}>\frac{a+2016}{b+2016}\)

Bình luận (0)
TV
Xem chi tiết
H24
17 tháng 7 2016 lúc 10:45

2/7<4/9,-17/25<-14/28,-31/19<-21/29

Bình luận (0)
SK
17 tháng 7 2016 lúc 10:49

a) Số hữu tỉ là số được viết dưới dạng \(\frac{a}{b}\)

d) \(\frac{2}{7}=\frac{18}{63}\)  ;  \(\frac{4}{9}=\frac{28}{63}\)   Vì 18 < 28 mà 63 = 63 

                                                                    => \(\frac{2}{7}< \frac{4}{9}\)

   \(\frac{-17}{25}=\frac{-476}{700}\) ;  \(\frac{-14}{28}=\frac{-350}{700}\) Vì  -476 < -350 mà 700=700

                                                                                       => \(\frac{-17}{25}< \frac{-14}{28}\)

   

Bình luận (0)