Rút gọn biểu thức
\(A=x^2\left(x+y\right)+y^2\left(x+y\right)+2x^2y+2xy^2\)
Rút gọn biểu thức:
A= \(x^2\left(x+y\right)+y^2\left(x+y\right)+2x^2y+2xy^2\)
\(A=x^2\left(x+y\right)+y^2\left(x+y\right)+2x^2y+2xy^2\)
\(A=x^2\left(x+y\right)+y^2\left(x+y\right)+2xy\left(x+y\right)\)
\(A=\left(x+y\right)\left(x^2+2xy+y^2\right)\)
\(A=\left(x+y\right)\left(x^2+2xy+y^2\right)\)
\(A=\left(x+y\right).\left(x+y\right)^2\)
\(A=\left(x+y\right)^3\)
rút gọn biểu thức
\(A=x^2\left(x+y\right)+y^2\left(x+y\right)+2x^2y+2xy^2\)
\(A=x^2\left(x+y\right)+y^2\left(x+y\right)+2xy\left(x+y\right)\)
\(\Leftrightarrow A=\left(x+y\right)\left(x^2+2xy+y^2\right)=\left(x+y\right)\left(x+y\right)^2=\left(x+y\right)^3\)
\(A=x^2\left(x+y\right)+y^2\left(x+y\right)+2x^2y+2xy^2\)
\(\Leftrightarrow A=\left(x^2+y^2\right)\left(x+y\right)+2xy\left(x+y\right)\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)\left(x+y\right)\)
\(\Leftrightarrow A=\left(x+y\right)^2\left(x+y\right)\)
\(\Leftrightarrow A=\left(x+y\right)^3\)
Rút gọn các biểu thức sau :
a) \(\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)
b) \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
a) (x + 3)(x2 – 3x + 9) – (54 + x3) = (x + 3)(x2 – 3x + 32 ) - (54 + x3)
= x3 + 33 - (54 + x3)
= x3 + 27 - 54 - x3
= -27
b) (2x + y)(4x2 – 2xy + y2) – (2x – y)(4x2 + 2xy + y2)
= (2x + y)[(2x)2 – 2 . x . y + y2] – (2x – y)(2x)2 + 2 . x . y + y2]
= [(2x)3 + y3]- [(2x)3 - y3]
= (2x)3 + y3- (2x)3 + y3= 2y3
Bài giải:
a) (x + 3)(x2 – 3x + 9) – (54 + x3) = (x + 3)(x2 – 3x + 32 ) - (54 + x3)
= x3 + 33 - (54 + x3)
= x3 + 27 - 54 - x3
= -27
b) (2x + y)(4x2 – 2xy + y2) – (2x – y)(4x2 + 2xy + y2)
= (2x + y)[(2x)2 – 2 . x . y + y2] – (2x – y)(2x)2 + 2 . x . y + y2]
= [(2x)3 + y3]- [(2x)3 - y3]
= (2x)3 + y3- (2x)3 + y3= 2y3
Bài 1 rút gọn biểu thức
A=\(\left(x-\frac{4xy}{x+y}+y\right)\):\(\left(\frac{x}{x+y}-\frac{y}{x-y}-\frac{2xy}{x^2-y^2}\right)\)
B=\(\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\right)\):\(\left(\frac{x^2+4x^2y^2+y^4}{x^2+y+xy+x}\right):\left(\frac{1}{2x^2+y+2}\right)\)
Rút gọn các biểu thức:
a) \(\left( {2x - 5y} \right)\left( {2x + 5y} \right) + {\left( {2x + 5y} \right)^2}\)
b) \(\left( {x + 2y} \right)\left( {{x^2} - 2xy + 4{y^2}} \right) + \left( {2x - y} \right)\left( {4{x^2} + 2xy + {y^2}} \right)\)
a)
\(\begin{array}{l}\left( {2x - 5y} \right)\left( {2x + 5y} \right) + {\left( {2x + 5y} \right)^2}\\ = \left( {2x + 5y} \right)\left( {2x - 5y + 2x + 5y} \right)\\ = \left( {2x + 5y} \right).4x\\ = 2x.4x + 5y.4x\\ = 8{x^2} + 20xy\end{array}\)
b)
\(\begin{array}{l}\left( {x + 2y} \right)\left( {{x^2} - 2xy + 4{y^2}} \right) + \left( {2x - y} \right)\left( {4{x^2} + 2xy + {y^2}} \right)\\ = {x^3} + {\left( {2y} \right)^3} + {\left( {2x} \right)^3} - {y^3}\\ = {x^3} + 8{y^3} + 8{x^3} - {y^3}\\ = \left( {{x^3} + 8{x^3}} \right) + \left( {8{y^3} - {y^3}} \right)\\ = 9{x^3} + 7{y^3}\end{array}\)
1. Viết biểu thức dưới dạng bình phương của một tổng
\(2xy^2+x^2y^4+1\)
2, Rút gọn biểu thức :
a, \(2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)
b, \(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)
1) 2xy2+x2y4+1=(xy2)2+2xy2.1+12=(xy2+1)2
2)
a)2(x-y)(x+y)+(x+y)2+(x-y)2=(x+y+x-y)2=(2x)2=4x2
b)(x-y+z)2+(z-y)2+2(x-y+z)(y-z)
=(x-y+z)2+(y-z)2+2(x-y+z)(y-z)
=(x-y+z+y-z)2
=x2
a) rút gọn biểu thức: \(A=x^2\left(x+y\right)+y^2\left(x+y\right)+2x^2y+2xy^2\)
b) tìm x biết: \(x\left(3x+2\right)+\left(x+1\right)^2-\left(2x-5\right)\left(2x+5\right)=12\)
a)A=x3+x2y+y2x+y3+2x2y+2xy2
=x3+3x2y+3xy2+y3
A=(x+y)3
b)=3x2+2x+(x2+2x+1)-(4x2-25)=12
3x2+2x+x2+2x+1-4x2+25=12
4x+26=12
= >4x=6/13
= >x=6,5
A= \(\left(\dfrac{x+y}{y}-\dfrac{2y}{y-x}\right):\left(\dfrac{x^2+y^2}{y-x}\right)+\left(\dfrac{x^2+1}{2x-1}-\dfrac{x}{2}\right).\dfrac{1-2x}{x+2}\)
Với điều kiện của x, y để A có nghĩa, hãy rút gọn biểu thức trên
\(A=\dfrac{x^2-y^2+2y^2}{y\left(x-y\right)}\cdot\dfrac{-\left(x-y\right)}{x^2+y^2}+\dfrac{2x^2+2-2x^2+x}{2\left(2x-1\right)}\cdot\dfrac{-\left(2x-1\right)}{x+2}\)
\(=\dfrac{-1}{y}+\dfrac{-1}{2}=\dfrac{-2-y}{2y}\)
Rút gọn biểu thức sau:
\(\left( {x - 2y} \right)\left( {{x^2} + 2xy + 4{y^2}} \right) + \left( {x + 2y} \right)\left( {{x^2} - 2xy + 4{y^2}} \right)\).
\(\begin{array}{l}\left( {x - 2y} \right)\left( {{x^2} + 2xy + 4{y^2}} \right) + \left( {x + 2y} \right)\left( {{x^2} - 2xy + 4{y^2}} \right)\\ = {x^3} - {\left( {2y} \right)^3} + {x^3} + {\left( {2y} \right)^3}\\ = {x^3} - 8{y^3} + {x^3} + 8{y^3}\\ = 2{x^3}\end{array}\)