Những câu hỏi liên quan
KL
Xem chi tiết
AH
16 tháng 9 2018 lúc 22:05

làm bừa thui,ai tích mình mình tích lại

Số số hạng là : 

Có số cặp là :

50 : 2 = 25 ( cặp )

Mỗi cặp có giá trị là :

99 - 97 = 2 

Tổng dãy trên là :

25 x 2 = 50

Đáp số : 50

Bình luận (0)
TT
16 tháng 9 2018 lúc 22:07

Bạn vào phần Câu hỏi tương tự ý. Có nhiều bn có câu hỏi giống lắm.

-Học tốt-

Bình luận (0)
PD
16 tháng 9 2018 lúc 22:20

\(\frac{a+b}{c+d}=\frac{b+c}{d+a}\)

\(\Rightarrow\left(a+b\right)\left(d+a\right)=\left(b+c\right)\left(c+d\right)\)

\(\Rightarrow ad+a^2+bd+ab=bc+bd+c^2+cd\)

\(\Rightarrow ad+a^2+ab=bc+c^2+cd\)

\(\Rightarrow a\left(d+a+b\right)=c\left(b+d+c\right)\)

\(\Rightarrow a=c\)

Bình luận (0)
HT
Xem chi tiết
ST
15 tháng 7 2017 lúc 12:35

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Theo tính chất dãy tỉ số bằng nhau có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

Bình luận (0)
ER
15 tháng 7 2017 lúc 12:45

ta có a+b/a-b=c+d/c-d

suy ra (a+b)(c-d)=(a-b)(c+d)

ac-ad+bc-bd=ac+ad-bc-bd

ac-ac+bc+bc-bd+bd=ad+ad

2bc=2ad 

nen bc=ad=a/b=c/d

vay tu a/b=c/d ta co the suy ra a+b/a-b=c+d/c-d

Bình luận (0)
NT
Xem chi tiết
BA
Xem chi tiết
SG
29 tháng 10 2016 lúc 21:14

Ta có: 2bd = c(b + d)

=> (a + c).d = bc + cd

=> ad + cd = bc + cd

=> ad = bc

=> \(\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

Bình luận (0)
ND
15 tháng 1 2018 lúc 13:54

Ta có : 2bd = c (b + d )

=) ( a + c ). d = bc + cd

=) ad + cd = bc + cd

=) ad = bc

=) a/b = c/ d ( đpcm)

Bình luận (0)
H24
22 tháng 3 2018 lúc 21:31

Ta có : 2bd = c (b + d )

 => ( a + c ). d = bc + cd 

=>ad + cd = bc + cd 

=>ad = bc 

=> a/b = c/ d ( đpcm)

Bình luận (0)
Xem chi tiết
OI

Nhanh nha các bn

Bình luận (0)
 Khách vãng lai đã xóa
MG
22 tháng 9 2021 lúc 13:37

a)  \(\frac{a}{a+b}=\frac{c}{c+d}\)=> a . ( c + d )  = c . ( a + b )

=> ac + ad = ac + cb

=> ad = bc

=> \(\frac{a}{b}=\frac{c}{d}\)

Bình luận (0)
 Khách vãng lai đã xóa
MG
22 tháng 9 2021 lúc 13:40

b) \(\frac{a+b}{c+d}=\frac{b+c}{d+a}\) => ( a + b ) . ( d + a ) = ( c + d ) . ( b + c )

=> ad + bd + a2 + ab = bc + bd + c2 + cd

=> ad + a2 + ab = bc + c2 + cd

=> a . ( b + d ) + a2 = c . ( b + d ) + c2

=> a = c

Bình luận (0)
 Khách vãng lai đã xóa
VH
Xem chi tiết
NP
6 tháng 11 2016 lúc 16:46

a=?

Bình luận (2)
NP
6 tháng 11 2016 lúc 16:53

\(\frac{a+b}{b+c}=\frac{c+d}{d+a}\Rightarrow\left(a+b\right)\left(d+a\right)=\left(c+d\right)\left(b+c\right)\)

=> a2+ab+ad+db=cb+c2+db+dc

=> a2+ab+ad+db-cb-c2-db-dc=0

=>( a2-c2) + (ab -bc) +( ad -dc)=0

=>(a+c)(a-c) +b(a-c) +d(a-c)=0

=>(a-c)(a+c+b+d)=0

=>\(\left[\begin{array}{nghiempt}a-c=0\\a+b+c+d=0\end{array}\right.\)

=>\(\left[\begin{array}{nghiempt}a=c\\a+b+c+d=0\end{array}\right.\)

Bình luận (0)
NS
6 tháng 11 2016 lúc 18:29

đề như đệt

Bình luận (0)
H24
Xem chi tiết
TD
14 tháng 7 2016 lúc 22:32

\(\left(a+b\right)\left(d+a\right)=\left(c+d\right)\left(b+c\right)\)

\(ad+a^2+bd+ab=bc+bd+c^2+cd\)

\(a\left(b+d\right)+a^2=c\left(b+d\right)+c^2\)

\(a+a^2=c+c^2\)

\(a=c\)

Bình luận (0)
HT
Xem chi tiết
H24
7 tháng 3 2020 lúc 18:24

Ta có:\(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)

\(\implies\)\(\frac{a+b}{c+d}=\frac{b+c}{d+a}\)

\(\implies\) \(\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1\)

\(\implies\) \(\frac{a+b+c+d}{c+d}=\frac{a+b+c+d}{d+a}\)

\(\implies\) \(\frac{a+b+c+d}{c+d}-\frac{a+b+c+d}{d+a}=0\)

\(\implies\) \(\left(a+b+c+d\right)\left(\frac{1}{c+d}-\frac{1}{d+a}\right)=0\)

\(\implies\)\(\orbr{\begin{cases}a+b+c+d=0\\\frac{1}{c+d}-\frac{1}{d+a}=0\end{cases}}\)

\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\\frac{1}{c+d}=\frac{1}{d+a}\end{cases}}\)

\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\c+d=d+a\end{cases}}\)

\(\implies\) \(\orbr{\begin{cases}a+b+c+d=0\\c=a\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
IS
7 tháng 3 2020 lúc 18:28

ta có \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)

=>\(\left(a+b\right)\left(a+d\right)=\left(c+d\right)\left(b+c\right)\)

=> \(a^2+ab+ad+bd=c^2+bc+bd+cd\)

=>\(a^2+ab+ad-bc-c^2-cd=0\)

=>\(\left(a^2-c^2\right)+\left(ab-cd\right)+\left(ab-ac\right)=0\)

=>\(\left(a-c\right)\left(a+c\right)+d\left(a-c\right)+b\left(a-c\right)=0\)

=>\(\left(a-c\right)\left(a+b+c+d\right)=0\)

=>\(\orbr{\begin{cases}a-c=0\\a+b+c+d=0\end{cases}\left(dpcm\right)}\)

hacker 2k6

Bình luận (0)
 Khách vãng lai đã xóa
IS
7 tháng 3 2020 lúc 18:30

bổ sung chỗ dưới

bạn => thêm là

\(=>\orbr{\begin{cases}a=c\\a+b+c+d=0\end{cases}\left(dpcm\right)}\)

Bình luận (0)
 Khách vãng lai đã xóa
QA
Xem chi tiết
NL
5 tháng 8 2015 lúc 16:36

a) Ta có: (a + b + c + d)(a - b - c +d )=( (a + d) + (b + c) )( (a + d) - (b + c) )

                                                     =(a + d )- (b +c )2                             (1)

              (a - b + c - d)(a + b - c - d)=(a - d)- (b - c)2                                  (2)

Từ (1) và (2)  => a+ 2ad + d- b- 2bc - c2=a- 2ad + d- b+ 2bc - c2

4ad=4bc => ad=bc <=> \(\frac{a}{c}=\frac{b}{d}\)  (đpcm)

 

Bình luận (0)