Những câu hỏi liên quan
H24
Xem chi tiết
NH
13 tháng 8 2016 lúc 20:57

Hỏi đáp Toán

Bình luận (0)
NT
Xem chi tiết
PN
24 tháng 5 2017 lúc 15:35

\(x^2-3x+1=\dfrac{5\sqrt{3}}{3}\sqrt{x^4+x^2+1}\)

\(\Leftrightarrow\)\(\left(x^2-3x+1\right)^2=\dfrac{25}{3}\left(x^4+x^2+1\right)\)

\(\Leftrightarrow\)\(x^4-6x^3+11x^2-6x+1=\dfrac{25}{3}x^4+\dfrac{25}{3}x^2+\dfrac{25}{3}\)

\(\Leftrightarrow11x^4+9x^3-4x^2+9x+11=0\)

\(\Leftrightarrow\left(x+1\right)\left(11x^3-2x^2-2x+11\right)=0\)

\(\Rightarrow x=-1\)

Bình luận (0)
SN
Xem chi tiết
VP
26 tháng 11 2019 lúc 20:45

a. ĐKXĐ: \(x\le\frac{-2-\sqrt{2}}{2};x\ge\frac{-2+\sqrt{2}}{2}\)

\(pt\Leftrightarrow2\sqrt{2x^2+4x+1}=2-2x^2-4x\)

\(\Leftrightarrow2x^2+4x+1+2\sqrt{2x^2+4x+1}+1=0\)

\(\Leftrightarrow\left(\sqrt{2x^2+4x+1}+1\right)^2=0\)

\(\Leftrightarrow\sqrt{2x^2+4x+1}+1=0\)

\(\Leftrightarrow\sqrt{2x^2+4x+1}=-1\)

\(\Rightarrow\text{pt vô nghiệm}\)

Bình luận (0)
 Khách vãng lai đã xóa
VP
26 tháng 11 2019 lúc 20:45

b. ĐKXĐ: \(x\le-4;x\ge4\)

Đặt \(\sqrt{x+4}+\sqrt{x-4}=t\left(t>0\right)\)

\(\Leftrightarrow t^2=2x+2\sqrt{x^2-16}\)

pt đã cho tương đương:

\(t=t^2\)

\(\Leftrightarrow t=1\) \(\left(\text{Vì }t>0\right)\)

\(\Leftrightarrow\sqrt{x+4}+\sqrt{x-4}=1\)

\(\Leftrightarrow2x+2\sqrt{x^2-16}=1\)

\(\Leftrightarrow2\sqrt{x^2-16}=1-2x\)

\(\Leftrightarrow\left\{{}\begin{matrix}4\left(x^2-16\right)=\left(1-2x\right)^2\\1-2x\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{65}{4}\\x\le\frac{1}{2}\end{matrix}\right.\Rightarrow\text{vô nghiệm}\)

Bình luận (0)
 Khách vãng lai đã xóa
MT
Xem chi tiết
HP
31 tháng 7 2021 lúc 22:47

a, ĐK: \(\left(x+1\right)\left(x^2+2x-1\right)\ge0\)

\(x^2+5x+2=4\sqrt{x^3+3x^2+x-1}\)

\(\Leftrightarrow x^2+2x-1+3\left(x+1\right)-4\sqrt{\left(x+1\right)\left(x^2+2x-1\right)}=0\)

TH1: \(x\ge-1\)

\(pt\Leftrightarrow\left(\sqrt{x^2+2x-1}-\sqrt{x+1}\right)\left(\sqrt{x^2+2x-1}-3\sqrt{x+1}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+2x-1}=\sqrt{x+1}\\\sqrt{x^2+2x-1}=3\sqrt{x+1}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x-1=x+1\\x^2+2x-1=9x+9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-2=0\\x^2-7x-10=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

TH2: \(x< -1\)

\(pt\Leftrightarrow\left(\sqrt{-x^2-2x+1}-\sqrt{-x-1}\right)\left(\sqrt{-x^2-2x+1}-3\sqrt{-x-1}\right)=0\)

\(\Leftrightarrow...\)

Bài này dài nên ... cho nhanh nha, đoạn sau dễ rồi

Bình luận (0)
NV
Xem chi tiết
NL
21 tháng 7 2021 lúc 12:48

c.

ĐKXĐ: \(\left[{}\begin{matrix}x\le-5\\x\ge6\end{matrix}\right.\)

\(\sqrt{\left(x-3\right)\left(x-5\right)}+\sqrt{\left(x-3\right)\left(x+5\right)}=\sqrt{\left(x-3\right)\left(x-6\right)}\)

- Với \(x\ge6\) , do \(x-3>0\) pt trở thành:

\(\sqrt{x-5}+\sqrt{x+5}=\sqrt{x-6}\)

Do \(\left\{{}\begin{matrix}\sqrt{x-5}>\sqrt{x-6}\\\sqrt{x+5}>0\end{matrix}\right.\) \(\Rightarrow\sqrt{x-5}+\sqrt{x+5}>\sqrt{x-6}\) pt vô nghiệm

- Với \(x\le-5\) pt tương đương:

\(\sqrt{\left(3-x\right)\left(5-x\right)}+\sqrt{\left(3-x\right)\left(-x-5\right)}=\sqrt{\left(3-x\right)\left(6-x\right)}\)

Do \(3-x>0\) pt trở thành:

\(\sqrt{5-x}+\sqrt{-x-5}=\sqrt{6-x}\)

\(\Leftrightarrow-2x+2\sqrt{x^2-25}=6-x\)

\(\Leftrightarrow2\sqrt{x^2-25}=x+6\) (\(x\ge-6\))

\(\Leftrightarrow4\left(x^2-25\right)=x^2+12x+36\)

\(\Leftrightarrow3x^2-12x-136=0\Rightarrow x=\dfrac{6-2\sqrt{111}}{3}\)

Bình luận (0)
NL
21 tháng 7 2021 lúc 12:49

a.

Kiểm tra lại đề, pt này không giải được

b.

ĐKXĐ: \(x\ge0\)

\(\sqrt{x\left(x+1\right)}-\sqrt{x}+1-\sqrt{x+1}=0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x+1}-1\right)-\left(\sqrt{x+1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x+1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x+1}=1\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bình luận (0)
MT
Xem chi tiết
LN
Xem chi tiết
H24
25 tháng 10 2019 lúc 18:37

c) Bài này nghiệm đẹp nên cứ yên tâm bình phương:) Còn em lâu rồi ko đi khủng bố tinh thần người đọc:P

ĐK: \(x\ge-\frac{1}{16}\)

PT \(\Leftrightarrow x^2-x-2+\frac{2\sqrt{1+16x}}{9}\left(\sqrt{1+16x}-9\right)-\frac{2\left(1+16x\right)}{9}=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+\frac{4}{9}\right)+\frac{2\sqrt{1+16x}}{9}\left(\frac{16\left(x-5\right)}{\sqrt{1+16x}+9}\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+\frac{4}{9}+\frac{32\sqrt{1+16x}}{9\left(\sqrt{1+16x}+9\right)}\right)=0\)

Cái ngoặc to luôn dương.

Do đó x = 5

P/s: Em đánh máy lỗi chỗ nào thì nhắn hộ em:D

Bình luận (0)
 Khách vãng lai đã xóa
H24
25 tháng 10 2019 lúc 18:50

a)ĐK:...

Đặt \(\sqrt{x+5}=a;\sqrt{3-x}=b\ge0\Rightarrow a^2+b^2=8\)

Theo đề bài ta có hệ \(\left\{{}\begin{matrix}a+b-2\left(ab+1\right)=0\\a^2+b^2=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b-2ab-2=0\\\left(a+b\right)^2-2ab-8=0\end{matrix}\right.\)

Lấy pt dưới trừ pt trên thu được \(\left(a+b\right)^2-\left(a+b\right)-6=0\Leftrightarrow\left[{}\begin{matrix}a+b=3\\a+b=-2\left(L\right)\end{matrix}\right.\)

Thay a + b = 3 vào pt đầu ta suy ra \(ab=\frac{1}{2}\)

Theo hệ thức Viet đảo: a, b là hai nghiệm của pt:\(t^2-3t+\frac{1}{2}=0\)

\(\Leftrightarrow t\in\left\{\frac{3+\sqrt{7}}{2};\frac{3-\sqrt{7}}{2}\right\}\).Đến đây xét 2 th:

TH1: \(\left\{{}\begin{matrix}a=\frac{3+\sqrt{7}}{2}\\b=\frac{3-\sqrt{7}}{2}\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}a=\frac{3-\sqrt{7}}{2}\\b=\frac{3+\sqrt{7}}{2}\end{matrix}\right.\) nữa là xong! (em nghĩ vậy thôi chứ ko chắc ở đoạn dùng hệ thức Viet đảo đâu!)

Bình luận (0)
 Khách vãng lai đã xóa
H24
25 tháng 10 2019 lúc 18:54

b) ĐK: \(x\ge-8\)

PT \(\Leftrightarrow3\sqrt{3}\left(x^2+4x+2\right)=\sqrt{x+8}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+4x+2\ge0\left(\text{*}\right)\\27\left(x^2+4x+2\right)^2=x+8\left(1\right)\end{matrix}\right.\) (đk (*) dùng để thử lại)

(1) \(\Leftrightarrow\left(3x^2+11x+4\right)\left(9x^2+39x+25\right)=0\)

Rồi chị làm tiếp giùm em:D Em ko chắc đâu nhá;))

Bình luận (0)
 Khách vãng lai đã xóa
DH
Xem chi tiết
PA
18 tháng 8 2017 lúc 8:48

\(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}=m\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(2-\sqrt{x-4}\right)^2}=m\)

\(\Leftrightarrow\left|\sqrt{x-4}+2\right|+\left|2-\sqrt{x-4}\right|=m\)

\(\left|\sqrt{x-4}+2\right|+\left|2-\sqrt{x-4}\right|\)

\(\ge\left|\sqrt{x-4}+2+2-\sqrt{x-4}\right|=4\)

\(\Rightarrow m\ge4\) thì pt trên có no

Bình luận (1)
MT
Xem chi tiết