Cho p=a^3+(a+1)^3+(a+2)^3. Chứng minh P chia hết cho 9
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1/ Chứng minh A chia hết cho 15
2/ Cho B = 3 + 33 + 35 +....+31991
Chứng minh B chia hết cho 13 và B chia hết cho 41
3/ A = 119 + 118+ .... + 11 + 1
Chứng minh A chia hết cho 5
4/ Chứng minh:
a. 1088 + 8 chia hết cho 2
b. 88 + 220 chia hết cho 17
1) Chứng minh rằng tích của 1 số chính phương và số tự nhiên đứng liền kề trước nó chia hết cho 12.
2) chứng minh rằng nếu a2 + b2 chia hết cho 3 thì a và b đồng thời chia hết cho 3.
3) chứng minh nếu a3 +b3 +c3 chia hết cho 9 thì ít nhất 1 trong 3 số a,b,c chia hết cho 3
1, Tìm hai số tự nhiên a và b biết: a, a2 -a=21
b, a2 + b2 -a - b=2015
2, Cho hai số tự nhiên a và b, chứng minh nếu 11a + 2b chia hết cho 19 thì 18a + 5b cũng chia hết cho 19
3,a, Cho a và b cùng chia hết cho 3. Chứng minh a2 + ab + b2 chia hết cho 9.
b, Cho (a-b)2 + 3ab chia hết cho 9. Chứng minh a chia hết cho 3 hoặc b chia hết cho 3.
Vì a chia hết cho 3 => a2 chia hết cho 9
Vì b chia hết cho 3 => b2 chia hết cho 9
Vì a, b chia hết cho 3 => ab chia hết cho 3.3 = 9
=> a2 + ab + b2 chia hết cho 9
Bài 1:
a) Chứng minh tổng của 3 số tự nhiên liên tiếp chia hết cho 3
b) Chứng minh tổng của 4 số tự nhiên liên tiếp chia hết cho 4
Bài 2: Tìm n thuộc số tự nhiên
a) 27-5n chia hết cho n
b)2n+3 chia hết cho n-2
Bài 3:
a)Chứng minh 102n - 1 chia hết cho 9
b) Chứng minh 103n -1 chia hết cho 9
2n+3 chia hết cho n- 2
=>(2n+3)- 2. (n- 2) chia hết cho n- 2
=>2n +3 - 2n +4 chia hết cho n- 2
=>7 chia hết cho n- 2
=> n- 2 thuộc Ư(7) ={......}
RỒI KẺ bẢNG Là XONG
Cho p=a^3+(a+1)^3+(a+2)^3. Chứng minh P chia hết cho 9
Xét hằng đẳng thức sau:
x^3 + y^3 + z^3 - 3xyz
= (x + y)^3 - 3xy(x + y) + z^3 - 3xyz
= [(x + y)^3 + z^3] - 3xy(x + y + z)
= (x + y + z)[(x + y)^2 - z(x + y) + z^2) - 3xy(x + y + z)
= (x + y + z)(x^2 + y^2 + z^2 + 2xy - xz - yz) - 3xy(x + y + z)
= (x + y + z)(x^2 + y^2 + z^2 - xy - yz - xz)
---> x^3 + y^3 + z^3 = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - xz) + 3xyz
Áp dụng hằng đẳng thức trên, ta có:
a^3 + (a + 1)^3 + (a + 2)^3
= (a + a + 1 + n + 2)[ a^2 + (a + 1)^2 + (a + 2)^2 -a(a + 1) - (a + 1)(a + 2) - a(a + 2)] - 3a(a + 1)(a + 2)
= (3a + 3)(a^2 + a^2 + 2a + 1 + a^2 + 4a + 4 - a^2 - a - a^2 - 3a - 2 - a^2 - 2a) - 3a(a + 1)(a + 2)
= 9(a + 1) - 3a(a + 1)(a + 2)
Vì a(a + 1)(a + 2) là tích 3 số nguyên liên tiếp nên chia hết 6
--> 3a(a + 1)(a + 2) chia hết 3.6 = 18 chia hết 9
--> 9(a + 1) - 3a(a + 1)(a + 2) chia hết 9
--> dpcm(Nho :D)
1. a, Cho B = 3 + 3^3 + 3^5 +...+ 3^1991. Chứng minh rằng: B chia hết cho 3 ; B chia hết cho 41
b, Chứng minh rằng: (99^5 - 98^4 - 97^3 - 96^3) chia hết cho 2, cho 5.
c, A = 999993^1999 - 555557^1997. Chứng minh: A chia hết cho 5.
d, A = 8n + 111..1 ( n chữ số 1 ). Chứng minh: A chia hết cho 9.
e, Cho ( abc + deg ) chia hết cho 37. Chứng minh: abcd chia hết chio 37.
2. Tìm 2 số biết rằng tổng của chúng gấp 7 lần hiệu của chúng, còn tích của chúng gấp 192 lần hiệu của chúng.
3. Tìm số nhỏ hơn 100, biết rằng khi chia số đó cho 5 thì được dư là 3, chia cho 11 dư 5.
1)
a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)
Vì \(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)
\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)
\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)
\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)
Vì \(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)
1 Chứng minh (8^102-2^102) chia hết cho 10
2 chứng minh
a 7^4n chia hết cho 5
b 3^4n+1+2 chia hết cho 5
c 2^4n+3+3 chia hết cho 9
d 2^4n+2+1 chia hết cho 5
e 9^2n+1 chia hết cho 5
Bài toán 1:
Cho A = 3 + 3^3 + 3^5 + ... + 3^1991
Chứng minh A chia hết cho 13, chia hết cho 14
Bài toán 2:
Chứng minh rằng : (n+7) . (n+8) . (n+9) chia hết cho 2 và chia hết cho 3 (n thuộc N)
Bài 1: Cho A=119+118+117+...+11+1 Chứng minh A chia hết cho 5
Bài 2 :
a) Cho A=2+22+23+...+260 Chứng minh A chia hết cho 3 ; 7 và 15
b) Cho B=3+33+35+...+31991 Chứng minh B chia hết cho 13 và 41