Cho tỉ lệ thức:\(\frac{abc}{a+bc}=\frac{bca}{b+ca}\)
CMR:\(\frac{a}{bc}=\frac{b}{ca}\)(abc;bca;ca;bc đều có gạch ngang trên đầu nhé)
Cho tỉ lệ thức : \(\frac{\overline{abc}}{a+\overline{bc}}=\frac{\overline{bca}}{b+\overline{ca}}\) , chứng minh tỉ lệ thức \(\frac{a}{\overline{bc}}=\frac{b}{\overline{ca}}\)
cho tỉ lệ thức \(\frac{\overline{abc}}{a+\overline{bc}}\)=\(\frac{\overline{bca}}{b+\overline{ca}}\)CM tỉ lệ thức \(\frac{a}{\overline{bc}}=\frac{b}{\overline{ca}}\)
Cho tỉ lệ thức \(\overline{\frac{abc}{a+bc}}\)=\(\overline{\frac{bca}{b+ca}}\), chứng minh tỉ lệ thức \(\frac{a}{bc}\)=\(\frac{b}{ca}\)
Cho tỉ lệ thức \(\frac{abc}{a+bc}=\frac{bca}{b+ca}\)Chứng Minh rằng \(\frac{a}{bc}=\frac{b}{ca}\)
Ta có:
\(\frac{abc}{a+bc}\)=\(\frac{bca}{b+ca}\)
<=>\(\frac{abc}{bca}=\frac{a+bc}{b+ca}\)
=>\(\frac{a+bc}{b+ca}\)=>\(\frac{a}{b}=\frac{bc}{ca}\)(tính chất dãy tỉ số bằng nhau)<=>\(\frac{a}{bc}=\frac{b}{ca}\)(đpcm)
B1: Cho \(\frac{\overline{abc}}{a+\overline{bc}}=\frac{\overline{bca}}{b+\overline{ca}}\)
C/m: \(\frac{a}{\overline{bc}}=\frac{b}{\overline{ca}}\)
B2: Cho \(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}\). C/m a = b = c
B3: Cho \(\left(a+b+c+d\right)\left(a-b-c-d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\). C/m 4 số a; b; c; d lập thành 1 tỉ lệ thức
\(\frac{100a+10b+c}{a+10b+c}=\frac{100b+10c+a}{b+10c+a}\Leftrightarrow\frac{99a}{a+10b+c}=\frac{99b}{b+10c+a}\Leftrightarrow\frac{a}{a+10b+c}=\frac{b}{b+10c+a}\)
- Nếu \(a=0\Rightarrow b=0\) ngược lại thì hiển nhiên ta có \(\frac{a}{10b+c}=\frac{b}{10c+a}\)
- Nếu a; b đều khác 0
\(\Rightarrow\frac{a+10b+c}{a}=\frac{b+10c+a}{b}\Rightarrow\frac{10b+c}{a}=\frac{10c+a}{b}\Rightarrow\frac{a}{10b+c}=\frac{b}{10c+a}\) (đpcm)
Bài 2 tương tự
\(\frac{10a+11b+c}{a+b}=\frac{10b+11c+a}{b+c}=\frac{10c+11a+b}{c+a}\) (tách \(\frac{10a+11b+c}{a+b}=10+\frac{b+c}{a+b}\) và tương tự, bài 1 cũng vậy nếu em chưa hiểu tại sao lại rút gọn được như dấu tương đương đầu tiên)
\(\Rightarrow\frac{b+c}{a+b}=\frac{c+a}{b+c}=\frac{a+b}{c+a}=\frac{2a+2b+2c}{2a+2b+2c}=1\)
\(\Rightarrow\left\{{}\begin{matrix}b+c=a+b\\c+a=b+c\\a+b=c+a\end{matrix}\right.\) \(\Rightarrow a=b=c\)
Bài 3: Đề bài thiếu, cần thêm 1 điều kiện gì đó
Em lấy thử \(\left(a;b;c;d\right)=\left(4;1;0;3\right)\) thì rõ ràng thỏa mãn giả thiết (\(0=0\)) nhưng 4 số này sao lập tỉ lệ thức được?
Vũ Minh TuấnBăng Băng 2k6tthNguyễn Hoàng NhiNguyễn Thị Diễm Quỳnh@Nk>↑@nguyen thi vangHoàng Tử HàHuyền
Cho tỉ lệ thức \(\dfrac{\overline{abc}}{a+\overline{bc}}=\dfrac{\overline{bca}}{b+\overline{ca}}\). CMR tỉ lệ thức \(\dfrac{a}{\overline{bc}}=\dfrac{b}{\overline{ca}}\)
tính k biết k=\(\frac{abc}{ab+c}+\frac{bca}{bc+a}+\frac{cab}{ca+b}\) (abc; bca; cab; ab; bc; ca là các số )
Tìm giá trị của k biết rằng:
a) k=\(\frac{\overline{ab}}{\overline{abc}}=\frac{\overline{bc}}{\overline{bca}}=\frac{\overline{ca}}{\overline{cab}}\)
b) k= \(\frac{\overline{abc}}{\overline{ab}+c}=\frac{\overline{bca}}{\overline{bc}+a}=\frac{\overline{cab}}{\overline{ca}+b}\)
Cho \(\frac{a+\overline{bc}}{\overline{abc}}=\frac{b+\overline{ca}}{\overline{bca}}=\frac{c+\overline{ab}}{\overline{cab}}\)
Chứng minh \(\frac{\overline{bc}}{a}=\frac{\overline{ca}}{b}\frac{\overline{ab}}{c}\)