A' = a0 +a1 +....+ an
viết a - 1 . A' +1
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Khi triển A= ( 1 + x 2 ) m ( 1 - 2 x ) n = a 0 + a 1 x + a 2 x 2 + a 3 x 3 + . . . + a 2 m + n x 2 m + n . Biết rằng a 0 + a 1 + a 2 + . . . + a 2 m + n = 512 , a 10 = 30150 . Hỏi a 19 bằng
A. – 33265
B. – 34526
C. – 6464
D. – 8364
Khai triển
A = 1 + x 2 m 1 - 2 x n = a 0 + a 1 x + a 2 x 2 + a 3 x 3 + . . . + a 2 m + n x 2 m + n
Biết rằng a 0 + a 1 + a 2 + . . . + a 2 m + n = 512 , a 10 = 30150 . Hỏi a 19 bằng:
A. – 33265
B. – 34526
C. – 6464
D. – 8364
Cho N và dãy số A1, A2, ......., An
Viết thuật toán tìm xem trong dãy có bao nhiêu giá trị chia hết cho 2?
#include <bits/stdc++.h>
using namespace std;
long long x,i,n,dem;
int main()
{
cin>>n;
dem=0;
for (i=1; i<=n; i++)
{
cin>>x;
if (x%2==0) dem++;
}
cout<<dem;
return 0;
}
(3x^8-2x^6+x^5+2x^4-x^2+1)^5=a0+a1 X +a2 X^2+… +a40 X^40
Giá trị tổng a0+a1 +a2 +… +a40 là:
A,1024
B,512
C,128
D,256
Khai triển ( 2 x + 1 ) 10 = A 0 + A 1 x + A 2 x 2 + . . . + A 10 x 10 , Trong đó A 0 , A 1 , . . . , A 10 là các số thực. Số lớn nhất trong các số A 0 , A 1 , . . . , A 10 là
A. A 10
B. A 7 .
C. A 8 .
D. A 9
Cho khai triển 1 + x + x 2 = a 0 + a 1 x + a 2 x 2 + . . . + a 2 n x 2 n với n ≥ 2 và a 0 , a 1 , a 2 , . . . , a 2 n là các hệ số. Tính tổng S = a 0 + a 1 + a 2 + . . . + a 2 n biết a 3 14 = a 4 41
A. S = 3 10
B. S = 3 12
C. S = 2 10
D. S = 2 12
Cho khai triển 1 + x + x 2 n = a 0 + a 1 x + a 2 x 2 + . . . + a 2 n x 2 n với n ≥ 2 và a 0 , a 1 , a 2 , . . . , a 2 n là các hệ số. Tính tổng S = a 0 + a 1 + a 2 + . . . + a 2 n biết a 3 14 = a 14 41
A. 3 10
B. 3 12
C. 2 10
D. 2 12
Cho khai triển 1 + x + x 2 n = a 0 + a 1 x + a 2 x 2 + . . . + a 2 n x 2 n ,
với n ≥ 2 và a 0 , a 1 , a 2 , . . . , a 2 n là các hệ số. Biết rằng a 3 14 = a 4 41 khi đó tổng S = a 0 + a 1 + a 2 + . . . + a 2 n bằng
A. S = 3 10
B. S = 3 11
C. S = 3 12
D. S = 3 13
Cho khai triển 1 + x + x 2 n = a 0 + a 1 x + a 2 x 2 + ... + a 2 n x 2 n , với n ≥ 2 và a 0 , a 1 , a 2 , ... , a 2 n là các hệ số. Biết rằng a 3 14 = a 4 41 khi đó tổng S = a 0 + a 1 + a 2 + ... + a 2 n bằng
A. S = 3 10 .
B. S = 3 11 .
C. S = 3 12 .
D. S = 3 13 .
Đáp án A
Ta có: 1 + x + x 2 n = 1 + x 1 + x n = ∑ k = 0 n C k n x k 1 + x k
= ∑ k = 0 n C n k x k ∑ j = 0 k C j k x k ⇒ T k + 1 = C k n x k ∑ j = 0 k C j k x k
Ta tính các số hạng như sau:
T 0 = 1 ;
T 1 = C n 1 C n 2 x + C n 1 C 1 1 x 2 = n x ; T 2 = C n 2 C n 0 x 2 + C n 2 C 2 1 x 3 + C n 2 C 2 2 x 4 , ....
Như vậy ta có:
a 3 = C n 2 C 2 1 + C n 3 C 2 0 ; a 4 = C n 2 C 2 2 + C n 3 C 3 1 + C n 4 C 4 0
Theo giả thiết
a 3 14 = a 4 41 ⇒ C n 2 C 2 1 + C n 3 C 2 0 14 = C n 2 C 2 2 + C n 3 C 3 1 + C n 4 C 4 0 41
⇔ 2. n n − 1 2 ! + n n − 1 n − 2 3 ! 14 = n n − 1 2 ! + 3 n n − 1 n − 2 3 ! + n n − 1 n − 2 n − 3 4 ! 41
⇔ 21 n 2 − 99 n − 1110 = 0 ⇒ n = 10
Trong khai triển:
1 + x + x 2 10 = a 0 + a 1 x + a 2 x 2 + ... + a 20 x 20
cho x = 1 ta được: S = a 0 + a 1 + a 2 + ... + a 20 = 3 10
Cho khai triển 1 + x + x 2 n = a 0 + a 1 x + a 2 x 2 + . . . + a 2 n x 2 n ,với n ≥ 2 và a 0 , a 1 , a 2 , . . . , a 2 n là các hệ số. Biết rằng a 3 14 = a 4 41 , khi đó tổng S = a 0 + a 1 + a 2 + . . . + a 2 n bằng
A. S = 3 10
B. S = 3 11
C. S = 3 12
D. S = 3 14