Những câu hỏi liên quan
HN
Xem chi tiết
NN
Xem chi tiết
NH
Xem chi tiết
HL
Xem chi tiết
DH
6 tháng 2 2017 lúc 16:59

Giải :

Áp dụng bđt |a| + |b| ≥ |a + b| ta có :

A = |x + 2| + |1 - x| ≥ |x + 2 + 1 - x| = 3

Dấu "=" xảy ra khi (x + 2)(1 - x) ≥ 0 <=> - 2 ≤ x ≤ 1

=> x = { - 2; - 1; 0; 1 }

Vậy với x = { - 2; - 1; 0; 1 } thì A đạt gtnn là 3

Bình luận (0)
H24
6 tháng 2 2017 lúc 16:55

A nhỏ nhất khi -2<=-x<=1

x={-2,-1,0,1}

Bình luận (0)
AT
Xem chi tiết
RD
22 tháng 3 2019 lúc 20:14

Ta có:\(P=a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+c^2+\frac{1}{c^2}\)

\(\Rightarrow P\ge a^2+b^2+c^2+\frac{9}{a^2+b^2+c^2}\)(bđt cauchy-schwarz)

\(P\ge\frac{a^2+b^2+c^2}{81}+\frac{9}{a^2+b^2+c^2}+\frac{80\left(a^2+b^2+c^2\right)}{81}\)

\(\Rightarrow P\ge\frac{2}{3}+\frac{80\left(a^2+b^2+c^2\right)}{81}\left(AM-GM\right)\)

Sử dụng đánh giá quen thuộc:\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=27\)

\(\Rightarrow P\ge\frac{2}{3}+\frac{80\cdot27}{81}=\frac{82}{3}\)

"="<=>a=b=c=3

Bình luận (0)
FM
Xem chi tiết
AN
21 tháng 9 2018 lúc 14:35

\(T_{min}=\frac{2715}{8}\) tại \(a=b=\frac{1}{2}\)

Bình luận (0)
AN
22 tháng 9 2018 lúc 10:23

\(T=\frac{19}{ab}+\frac{6}{a^2+b^2}+2011\left(a^4+b^4\right)\)

\(=\frac{19}{ab}+\frac{6}{a^2+b^2}+304\left(a^4+b^4+\frac{1}{16}+\frac{1}{16}\right)+48\left(a^4+\frac{1}{16}\right)+48\left(b^4+\frac{1}{16}\right)+1659\left(a^4+b^4\right)-44\)

\(\ge\frac{19}{ab}+\frac{6}{a^2+b^2}+304ab+24\left(a^2+b^2\right)+1659.\frac{\left(\frac{\left(a+b\right)^2}{2}\right)^2}{2}-44\)

\(=\left(\frac{19}{ab}+304ab\right)+\left(\frac{6}{a^2+b^2}+24\left(a^2+b^2\right)\right)+\frac{1307}{8}\)

\(\ge152+24+\frac{1307}{8}=\frac{2715}{8}\)

Bình luận (0)
CP
Xem chi tiết
HG
Xem chi tiết
NH
Xem chi tiết