Chứng tỏ
Tích 4 số liên tiếp chia hết cho 24
Giúp mình kiểm tra lại đê các bạn
a) Chứng tỏ rằng tổng của 5 số TN liên tiếp chia hết cho 5
b) chứng tỏ tổng của 4 số TN liên tiếp không chia hết cho 4
mong các bạn giúp đỡ mình
Gọi 5 số tự nhiên liên tiếp là:5k;5k+1;5k+2;5k+3;5k+4.
Ta có tổng 5 số:
\(5k+5k+1+5k+2+5k+3+5k+4\)+4
\(=20k+1+2+3+4\)
\(=20k+10\)
\(5.\left(2+4k\right)\) chia hết cho 5.
Phần b em làm tương tự nhé.
Chúc em học tốt^^
bài1 chứng tỏ rằng tổng của 3 só tự nhiên liên tiếp chia hết cho 3 và tổng cuả 4 số tự nhiên liên tiếp thì không chia hết cho 4
bài 2 chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3).(n+6 ) thì chia hết cho 2
Các bạn giải rõ ràng cả hai bì giúp mình với nhé.Mình cảm ơn các bạn nhiều
Bài 1
Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2. Tổng của chúng là
n+n+1+n+2=3n+3=3(n+1) chia hết cho 3
Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3. Tổng của chúng là
n+n+1+n+2+n+3=4n+6=4n+4+2=4(n+1)+2 chia cho 4 dư 2
Bài 2
(Xét tính chẵn hoặc lẻ của n)
+ Nếu n lẻ thì n+3 chẵn; n+6 lẻ => (n+3)(n+6) chẵn => chia hết cho 2
+ Nếu n chẵn thì n+3 lẻ, n+6 chẵn => (n+3)(n+6) chẵn => chia hết cho 2
=> (n+3)(n+6) chia hết cho 2 với mọi n
Chứng minh rằng: a) Tích của 2 số tự nhiên liên tiếp chia hết cho 2.
b) Tích của 3 số tự nhiên liên tiếp chia hết cho 6.
c) Tích của 4 số tự nhiên liên tiếp chia hết cho 24.
d) Tích của 5 số tự nhiên liên tiếp chia hết cho 120.
Giải cả 4 phần giúp mình nhé. Xin cảm ơn chân thành các bạn giúp mình giải cả 4 phần!!!
b) Giar sử gọi 3 số tự nhiên liên tiếp là: a, a+1,a+2.
Theo đề bài ta có :
A = a(a + 1) (a + 2) + 6
Ta có 6 = 3x2 mà ( 3,2) = 1
A + 2 vì trong A số tự nhiên liên tiếp có một số chia hết cho 2
A + 3 vì trong A số tự nhiên liên tiếp có một số chia hết cho 3
Vậy tích của 3 STN liên tiếp chia hết cho 6.
Chứng tỏ rằng:
a) Trong 2 số tự nhiên liên tiếp, có một số chia hết cho 2
b) Trong 3 số tự nhiên liên tiếp, có một số chia hết cho 3
các bạn giúp mình nhé, mình đang vội
chứng tỏ rằng
a) trong hai số tự nhiên liên tiếp , có một số chia hết cho 2
b) trong ba số tự nhiên liên tiếp, có một số chia hết cho 3
các bạn giải rõ giúp mình nha
a) Gọi hai số tự nhiên liên tiếp là a và a + 1
Nếu a chia hết cho 2 thì bài toán được chứng minh .
Nếu a không chia hết cho 2 thì a = 2k + 1 ( k ∈ N)
Suy ra : a + 1 = 2k + 1 + 1
Ta có : 2k ⋮ 2 ; 1 + 1 = 2 ⋮ 2
Suy ra ( 2k +1 +1 ) ⋮ 2 hay ( a+ 1) ⋮ 2
Vậy trong hai số tự nhiên liên tiếp , có một số chia hết cho 2
b) Gọi ba số tự nhiên liên tiếp là a , a + 1 , a + 2
Nếu a chia hết cho 3 thì bài toán được chứng minh
Nếu a không chia hết cho 3 thì a = 3k + 1 hoặc a = 3k + 2 ( k ∈ N)
Nếu a = 3k + 1 thì a + 2 = 3k + 1 + 2 = 3k + 3 ⋮ 3
Nếu a = 3k + 2 thì a + 1 = 3k + 2 + 1 = 3k + 3 ⋮ 3
Vậy trong ba số tự nhiên liên tiếp có một số chia hết cho 3.
a) Gọi hai số tự nhiên liên tiếp là a , a + 1
Nếu a chia hết cho 2 thì bài toán đã được giải
Nếu a = 2k + 1 thì a + 1 = 2k + 2, chia hết cho 2
b) Gọi ba số tự nhiên liên tiếp là a , a + 1 , a + 2
Nếu a chia hết cho 3 thì bài toán đã được giải
Nếu a = 3k + 1 thì a + 2 = 3k + 3 , chia hết cho 3
Nếu a = 3k + 2 thì a + 1 = 3k + 3 , chia hết cho 3
Bài này mik học rồi nên mik chắc chắn đúng luôn
1.Chứng tỏ rằng:
a)Trong hai số tự nhiên liên tiếp ,có một số chia hết cho 2
b)Trong hai số tự nhiên liên tiếp ,có một số chia hết cho 3
2.Chứng tỏ rằng:
a)Tổng của 3 số tự nhiên liên tiếp là một số chia hết cho 3
b)Tổng của 4 số tự nhiên liên tiếp là một số không chia hết cho 4
3.Chứng tỏ rằng số có dạng aaaaaa bao giờ cũng chia hết cho 7
4.Chứng tỏ rằng số có dạng abcabc bao giờ cũng chia hết cho 11
5. Chứng tỏ rằng nếu hai số có cùng số dư khi chia co 7 thì hiệu của chúng chia hết
Giúp mình nha mình đang gấp lắm!!!
Câu 5 là chỗ cuối cùng là chia hết cho 7 nha .mình quên ghi
Chứng tỏ rằng:
a,Tích của ba số nguyên liên tiếp chia hết cho 3
b,Tích của năm số nguyên liên tiếp chia hết cho 5
c,Tích của bốn số nguyên liên tiếp ko chia hết cho 4
a)Gọi ba số nguyên liên tiếp là a, a+1, a+2
ta có cấc+a+1+a+2=3a+3
vì 3a chia hết cho 3
3 chia hết cho 3
nên tổng của 3 số nguyên liên tiếp thì chia hết cho 3
b)Gọi 5 số nguyên liên tiếp là a,a+1,a+2.a+3.a+4
ta có:a+a+1+a+2+a+3+a+4=10a+5 chia hết cho 5
chúc bạn học tốt !!!
Các bạn giúp mik với ạ:
Chứng tỏ rằng :Tích của 2 số chẵn liên tiếp chia hết cho 8
Gọi 2 số chẵn liên tiếp là 2k và 2k + 2, ta có:
A = 2k(2k + 2) = 4k(k + 1)
Ta thấy A chia hết cho 4 và A chia hết cho 2 (do k và k + 1 là 2 số tự nhiên liên tiếp)
=> A chia hết cho 8
CMR:
a, Tích của hai số tự nhiên liên tiếp chia hết cho 2
b, Tích của 3 số tự nhiên liên tiếp chia hết cho 6
c, Tích của 4 số tự nhiên liên tiếp chia hết cho 24
d, Tích của 5 số tự nhiên liên tiếp chia hết cho 120
CÁC BẠN LÀM ĐƯỢC PHẦN NÀO THÌ LÀM . MONG CÓ NHIỀU BẠN GIÚP MÌNH.
Gọi 2 số tự nguyên liên tiếp là: a và a+1
Tích của chúng là: A = a(a+1)
Nếu: a = 2k thì A chia hết cho 2 Nếu: a = 2k+1 thì: a+1 = 2k+2 chia hết cho 2 => A chia hết cho 2=> đpcm