Chứng ming hằng đẳng thức
(a+b+c)³=a³+b³+c³+3(a+b)*(b+c)*(c+a)
Giúp mk nhé
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
chứng minh hằng đẳng thức
a)(a+b+c)^3 - a^3 -b^3 - c^3 = 3(a+b)(b+c)(c+a)
b) a^3 + b^3 + c^3 - 3abc = (a+b+c)(a^2+b^2+c^2 - ab - bc - ca)
Giúp mình với nhé
chứng minh hằng đẳng thức :
(a+b+c)^3=a^3+b^3+c^3+3(a+b)(b+c)(c+a)
Ta có \(VT=\left(a+b+c\right)^3=\left[\left(a+b\right)+c\right]^3=\left(a+b\right)^3+3\left(a+b\right)^2.c+3\left(a+b\right)c^2+c^3\)
\(=a^3+3a^2b+3ab^2+b^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left[\left(a+b\right)c+c^2+ab\right]\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left[a\left(b+c\right)\right]+c\left(b+c\right)\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)
Vậy \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Chứng minh hằng đẳng thức :
( a + b + c )^3 = a^3 + b^3 + c^3 + 3( a + b )( b + c )( c + a )
(a+b+c)^3=((a+b)+c)^3=(a+b)^3+c^3+3(a+b)c(a+b+c)
=a^3+b^3+3ab(a+b)+c^3+3(a+b)c(a+b+c)
=a^3+b^3+c^3+3(a+b)(ab+c(a+b+c))
=a^3+b^3+c^3+3(a+b)(ab+ac+bc+c^2)
=a^3+b^3+c^3+3(a+b)(a+c)(b+c)
có tính chất (a+b)n=an+bn à.nếu có chứng minh?
Chứng minh hằng đẳng thức:
(a+b+c)3= a3 + b3 + c3 + 3(a+b)(b+c)(c+a)
Các bn giúp mk vs :))
Ai lm đc mk thì mk cho 3 tick!!!
~~~Kb nx nha~~~
(a+b+c)3=[(a+b)+c]3=(a+b)3+c3+3(a+b)c(a+b+c)
=a3+b3+3ab(a+b)+c3+3(a+b)c(a+b+c)
=a3+b3+c3+3(a+b)[ab+c(a+b+c)]
=a3+b3+c3+3(a+b)(ab+ac+bc+c2)
==a3+b3+c3+3(a+b)[(ab+ac)+(bc+c2)]
=a3+b3+c3+3(a+b)(a+c)(b+c)
#)Giải :
\(a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(ab+ac+ca+c^2\right)\)
\(=a^3+b^3+3ab\left(a+b\right)+c^3+3\left(a+b\right)c\left(a+b+c\right)\)
\(=\left(a+b^3\right)+c^3+3\left(a+b\right)c\left(a+b+c\right)\)
\(=\left(a+b+c\right)^3\)
\(\Rightarrowđpcm\)
Chứng minh hằng đẳng thức: a + b + c 3 = a 3 + b 3 + c 3 + 3(a+b)(b+c)(c+a)
Biến đổi vế trái:
a + b + c 3 = a + + c 3 = a + b 3 +3 a + b 2 c+3(a+b) c 2 + c 3
= a 3 + 3 a 2 b + 3a b 2 + b 3 + 3( a 2 + 2ab + b 2 )c + 3a c 2 + 3b c 2 + c 3
= a 3 + 3 a 2 b + 3a b 2 + b 3 + 3 a 2 c + 6abc + 3 b 2 c + 3a c 2 + 3b c 2 + c3
= a 3 + b 3 + c 3 + 3 a 2 b + 3a b 2 + 3 a 2 c + 6abc + 3 b 2 c + 3a c 2 + 3b c 2
= a 3 + b 3 + c 3 + (3 a 2 b + 3a b 2 ) +( 3 a 2 c + 3abc)+ (3abc + 3 b 2 c)+(3a c 2 + 3b c 2 )
= a 3 + b 3 + c 3 + 3ab(a + b) + 3ac(a + b) + 3bc(a + b) + 3 c 2 (a + b)
= a 3 + b 3 + c 3 + 3(a + b)(ab + ac + bc + c 2 )
= a 3 + b 3 + c 3 + 3(a + b)[a(b + c) + c(b + c)]
= a 3 + b 3 + c 3 + 3(a + b)(b + c)(a + c) (đpcm)
Chứng minh hằng đẳng thức;
\(a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)^3\)
Để chứng minh hằng đẳng thức a^3 + b^3 + c^3 + 3(a+b)(b+c)(c+a) = (a+b+c)^3, ta sẽ sử dụng công thức khai triển đa thức.
Theo công thức khai triển đa thức, ta có:
(a+b+c)^3 = a^3 + b^3 + c^3 + 3(a+b)(b+c)(c+a)
Vậy, hằng đẳng thức được chứng minh.
Chứng minh rằng hằng đẳng thức:
\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
(a+b+c)^3=((a+b)+c)^3=(a+b)^3+c^3+3(a+b)c(a+b+c)
=a^3+b^3+3ab(a+b)+c^3+3(a+b)c(a+b+c)
=a^3+b^3+c^3+3(a+b)(ab+c(a+b+c))
=a^3+b^3+c^3+3(a+b)(ab+ac+bc+c^2)
=a^3+b^3+c^3+3(a+b)(a+c)(b+c)
chứng minh rằng đẳng thức
(a+b+c)^3 = a^3 + b^3 + c^3 + 3(a+b)(b+c)(c+a)
giúp mình với nhé mình cảm ơn trước ạ!!!!!
(a+b+c)3=((a+b)+c)3=(a+b)3+c3+3(a+b)c(a+b+c)
=a3+b3+3ab(a+b)+c3+3(a+b)c(a+b+c)
=a3+b3+c3+3(a+b)(ab+c(a+b+c))
=a3+b3+c3+3(a+b)(ab+ac+bc+c2)
=a3+b3+c3+3(a+b)(a+c)(b+c)
(a+b+c)3=((a+b)+c)3=(a+b)3+c3+3(a+b)c(a+b+c)
=a3+b3+3ab(a+b)+c3+3(a+b)c(a+b+c)
=a3+b3+c3+3(a+b)(ab+c(a+b+c))
=a3+b3+c3+3(a+b)(ab+ac+bc+c2)
=a3+b3+c3+3(a+b)(a+c)(b+c)
(a+b+c)3=((a+b)+c)3=(a+b)3+c3+3(a+b)c(a+b+c)
=a3+b3+3ab(a+b)+c3+3(a+b)c(a+b+c)
=a3+b3+c3+3(a+b)(ab+c(a+b+c))
=a3+b3+c3+3(a+b)(ab+ac+bc+c2)
=a3+b3+c3+3(a+b)(a+c)(b+c)
C/m các hằng đẳng thức sau:
a, ( a + b + c ) 3 - a 3 - b 3 - c 3 = 3 ( a + b ) ( b + c ) ( c + a )
b, a 3 + b 3 + c 3 - 3abc = ( a + b + c ) ( a 2 + b 2 + c 2 - ab - bc - ca )
Các bn giúp mk nhé, cảm ơn
a) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left[\left(a+b\right)+c\right]^3-a^3-b^3-c^3\)
\(=\left(a+b\right)^3+c^3+3c\left(a+b\right)\left(a+b+c\right)-a^3-b^3-c^3\)
\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)
\(=3\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]\)
\(=3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)
=> ĐPCM
b) \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)^2+c^3-3abc\)
\(=\left[\left(a+b\right)^3+c^3\right]-\left(3a^2b+3abc+3ab^2\right)\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right).c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right).c+c^2-3ab\right]\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
=> ĐPCM
P/s: Có sao sót xin bỏ qua
a) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left(a+b\right)^3+3\left(a+b\right)^2\cdot c+3\left(a+b\right)c^2+c^3\)\(-a^3-b^3-c^3\)
\(=a^3+b^3+c^3+3a^2b+3ab^2+3\left(a^2+2ab+b^2\right)c\)\(+3ac^2+3bc^2-a^3-b^3-c^3\)
\(=3a^2b+3ab^2+3a^2c+6abc+3b^2c+3ac^2+3bc^2\)
\(=\left(3abc+3a^2c+3b^2c+3bc^2\right)\)\(+\left(3a^2b+3a^2c+3ab^2+3abc\right)\)
\(=c\left(3ab+3ac+3b^2+3bc\right)\)\(+a\left(3ab+3ac+3b^2+3bc\right)\)
\(=\left(a+c\right)\left[\left(3ab+3b^2\right)+\left(3ac+3bc\right)\right]\)
\(=\left(a+c\right)\left[3b\left(a+b\right)+3c\left(a+b\right)\right]\)
\(=3\left(a+c\right)\left(a+b\right)\left(b+c\right)\)
b) \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)( do \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\))
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]\)\(-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ab-ac\right)\)\(-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)