Những câu hỏi liên quan
DT
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
NC
3 tháng 6 2019 lúc 13:46

Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath

eM THAM khảo nhé!

Bình luận (0)
TT
Xem chi tiết
EC
20 tháng 8 2016 lúc 21:21

a)\(\frac{1}{4}-\left|x+\frac{3}{2}\right|\)

           Vì \(-\left|x+\frac{3}{2}\right|\)\(\le\)0

        Suy ra:\(\frac{1}{4}-\left|x+\frac{3}{2}\right|\le\frac{1}{4}\)

      Dấu = xảy ra khi \(x+\frac{3}{2}=0\)

                                 \(x=-\frac{3}{2}\)

Vậy Max A=\(\frac{1}{4}\) khi \(x=-\frac{3}{2}\)

b)\(\frac{5}{3}-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\)

        Vì \(-\left|x-\frac{4}{3}\right|\le0;-\left|y+\frac{1}{2}\right|\le0\)

               Suy ra:\(\frac{5}{3}-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\le\frac{5}{3}\)

     Dấu = xảy ra khi \(x-\frac{4}{3}=0;x=\frac{4}{3}\)

                                 \(y+\frac{1}{2}=0;y=-\frac{1}{2}\)

Vậy Max B=\(\frac{5}{3}\) khi \(x=\frac{4}{3};y=-\frac{1}{2}\)

 

Bình luận (0)
HN
20 tháng 8 2016 lúc 21:22

a/ Ta có ; \(\left|x+\frac{3}{2}\right|\ge0\Rightarrow-\left|x+\frac{3}{2}\right|\le0\Rightarrow\frac{1}{4}-\left|x+\frac{3}{2}\right|\le\frac{1}{4}\)

Vậy BT đạt giá trị lớn nhất bằng 1/4 khi x = -3/2

b/ \(\begin{cases}\left|x-\frac{4}{3}\right|\ge0\\\left|y+\frac{1}{2}\right|\ge0\end{cases}\) \(\Rightarrow\begin{cases}-\left|x-\frac{4}{3}\right|\le0\\-\left|y+\frac{1}{2}\right|\le0\end{cases}\) 

\(\Rightarrow-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\le0\)

\(\Rightarrow\frac{5}{3}-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\le\frac{5}{3}\)

Vậy BT đạt giá trị lớn nhất bằng 5/3 khi x = 4/3 , y = -1/2

Bình luận (0)
LF
20 tháng 8 2016 lúc 21:23

a)Đặt \(A=\frac{1}{4}-\left|x+\frac{3}{2}\right|\)

Ta thấy: \(\left|x+\frac{3}{2}\right|\ge0\)

\(\Rightarrow-\left|x+\frac{3}{2}\right|\le0\)

\(\Rightarrow\frac{1}{4}-\left|x+\frac{3}{2}\right|\le\frac{1}{4}-0=\frac{1}{4}\)

\(\Rightarrow A\le\frac{1}{4}\)

Dấu = khi \(x=-\frac{3}{2}\)

Vậy MaxA=\(\frac{1}{4}\Leftrightarrow x=-\frac{3}{2}\)

b)Đặt \(B=\frac{5}{3}-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\)

Ta thấy: \(\begin{cases}\left|x-\frac{4}{3}\right|\\\left|y+\frac{1}{2}\right|\end{cases}\ge0\)

\(\Rightarrow\begin{cases}-\left|x-\frac{4}{3}\right|\\-\left|y+\frac{1}{2}\right|\end{cases}\)\(\le0\)

\(\Rightarrow-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\le0\)

\(\Rightarrow\frac{5}{3}-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\le\frac{5}{3}-0=\frac{5}{3}\)

\(\Rightarrow B\le\frac{5}{3}\)

Dấu = khi \(\begin{cases}x=\frac{4}{3}\\y=-\frac{1}{2}\end{cases}\)

Vậy MaxB=\(\frac{5}{3}\Leftrightarrow\)\(\begin{cases}x=\frac{4}{3}\\y=-\frac{1}{2}\end{cases}\)

 

 

Bình luận (0)
H24
Xem chi tiết
NH
Xem chi tiết
TD
7 tháng 10 2018 lúc 22:20

\(B=\frac{3\left(x+1\right)}{x^3+x^2+x+1}\)

\(=\frac{3\left(x+1\right)}{x^2\left(x+1\right)+x+1}\)

\(=\frac{3\left(x+1\right)}{\left(x^2+1\right)\left(x+1\right)}\)

\(=\frac{3}{x^2+1}\)

Vì \(x^2+1\ge1\)

\(\Rightarrow B=\frac{3}{x^2+1}\le3\)

Dấu "=" xảy ra <=> x=0

Vậy GTLN của B =3 <=> x=0 

Bình luận (0)
H24
7 tháng 10 2018 lúc 22:23

điều kiện : \(x\ne-1\)\(B=\frac{3\left(x+1\right)}{x^3+x^2+x+1}\Leftrightarrow\frac{3\left(x+1\right)}{\left(x+1\right)\left(x^2+1\right)}\)
\(\Leftrightarrow\frac{3}{x^2+1}\)=> B lớn nhất khi \(x^2+1\)bé nhất = > x = 0 khi B = 3
mình làm hơi vắn tắt bạn thông cảm

Bình luận (0)
DL
Xem chi tiết
SG
Xem chi tiết
HA
Xem chi tiết