Những câu hỏi liên quan
XC
Xem chi tiết
NH
25 tháng 6 2017 lúc 16:51

Sửa đề bài: \(2^x=8^{y+1}\)và  \(9^y=3^{x-9}\)

Có: \(2^x=8^{y+1}\)

\(\Leftrightarrow2^x=\left(2^3\right)^{y+1}\)

\(\Leftrightarrow2^x=2^{3y+3}\)

\(\Leftrightarrow x=3y+3\)   (1)

Lại có: \(9^y=3^{x-9}\)

\(\Leftrightarrow\left(3^2\right)^y=3^{x-9}\)

\(\Leftrightarrow3^{2y}=3^{x-9}\)

\(\Leftrightarrow2y=x-9\)    (2)

Thay (1) vào (2), ta có:

=> 2y = 3y + 3  - 9

=> 2y = 3y - 6

=> 2y - 3y = -6

=> -1y = -6

=> y = 6 \(\left(y\in N\right)\)

Từ x = 3y + 3 (theo điều 1)

=> x = 3.6 + 3 = 21 \(\left(x\in N\right)\)

Vậy x + y = 21 + 6 = 27

Bình luận (0)
TA
25 tháng 6 2017 lúc 18:03

Bạn huy sai rồi::::2x chứ ko phải 2x

Bình luận (0)
H24
Xem chi tiết
VT
9 tháng 12 2016 lúc 9:12

\(2^x=2^{3\left(y+1\right)}\Rightarrow x=3y+3\)

\(3^{2y}\Rightarrow3^{x-9}\Rightarrow2y=x-9\Rightarrow x=2y+9\)

\(\Rightarrow3y+3=2y+9\Rightarrow y=6\Rightarrow x=21\Rightarrow x+y=27\)

Bình luận (0)
PD
9 tháng 12 2016 lúc 11:14

Ta có:\(2^x=8^{y+1}\Rightarrow2^x=2^{3\left(y+1\right)}\Rightarrow2^x=2^{3y+3}\Rightarrow x=3y+3\)

\(\Rightarrow9^y=3^{x-9}\Rightarrow3^{2y}=3^{3y+3-9}\Rightarrow3^{2y}=3^{3y-6}\Rightarrow2y=3y-6\)

\(\Rightarrow2y-3y=-6\Rightarrow-y=-6\Rightarrow y=6\)

\(\Rightarrow x=6\cdot3+3=21\)

\(\Rightarrow x+y=21+6=27\)

Bình luận (0)
H24
Xem chi tiết
VT
22 tháng 7 2023 lúc 8:31

`a, = 3x^2y - 3xy + 6x^2y + 5xy - 9x^2y`

`= 2xy`.

Thay `x = 2/3; y = -3/4` vào BT:

`2 . 2/3 . -3/4 = -1.`

`b, x(x-2y) - y(y^2-2x)`

`= x^2 - 2xy - y^3 + 2xy`

`= x^2 - y^3`

Thay `x = 5; y =3` vào BT:

`= 5^2 - 3^3 = 25 - 27 = -2`

Bình luận (0)
H9
22 tháng 7 2023 lúc 8:31

a) \(3x^2y-\left(3xy-6x^2y\right)+\left(5xy-9x^2y\right)\)

\(=3x^2y-3xy+6x^2y+5xy-9x^2y\)

\(=2xy\)

Thay \(x=\dfrac{2}{3},y=-\dfrac{3}{4}\) vào Bt ta có:

\(2\cdot\dfrac{2}{3}\cdot-\dfrac{3}{4}=-1\)

b) \(x\left(x-2y\right)-y\left(y^2-2x\right)\)

\(=x^2-2xy-y^3+2xy\)

\(=x^2-y^3\)

Thay \(x=5,y=3\) vào Bt ta có:
\(5^2-3^3=-3\)

Bình luận (0)
VT
Xem chi tiết
PA
20 tháng 9 2021 lúc 17:31

a, Với x = 3 và y = -2 ta có:

\(A=\dfrac{3}{2}+\dfrac{4}{9}.\left(6-\left|3\right|\right)+\left(-2\right)\)

\(A=\dfrac{3}{2}+\dfrac{4}{9}.\left(6-3\right)-2\)

\(A=\dfrac{3}{2}+\dfrac{4}{9}.3-2\)

\(A=\dfrac{3}{2}+\dfrac{4}{3}-2\)

\(A=\dfrac{5}{6}\)

 

 Với x = 3 và y = -3 ta có:
\(B=\left|2.3-1\right|+\left|3.\left(-3\right)+2\right|\)

\(B=\left|5\right|+\left|-7\right|\)

\(B=5+7=12\)

Hoctot ! ko hiểu chỗ nào cứ hỏi cj nhévui

 
Bình luận (1)
VN
Xem chi tiết
DA
28 tháng 12 2015 lúc 17:29

5.\(C\text{ó}x^2-12=0\Rightarrow x^2=12\Rightarrow x=\sqrt{12}ho\text{ặc}x=-\sqrt{12}\)

Mà x>0\(\Rightarrow x=\sqrt{12}\)

6.Vì x-y=4\(\Rightarrow\left(x-y\right)^2=x^2-2xy+y^2=x^2-10+y^2=4^2=16\Rightarrow x^2+y^2=26\)

Có \(\left(x+y\right)^2=x^2+2xy+y^2=26+10=36=6^2=\left(-6\right)^2\)

Vì xy>0 và x>0 =>y>0=>x+y>0=>x+y=6

7. \(3x^2+7=\left(x+2\right)\left(3x+1\right)\)

\(3x^2+7=3x^2+7x+2\)

\(3x^2+7-3x^2-7x-2=0\)

-7x+5=0

-7x=-5

\(x=\frac{5}{7}\)

8.\(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)

\(\left(2x+1\right)^2-\left(2x+4\right)^2=9\)

(2x+1-2x-4)(2x+1+2x+4)=9

-3(4x+5)=9

4x+5=-3

4x=-8

x=-2

Còn câu 9 và 10 để mình nghiên cứu đã

 

 

Bình luận (0)
SL
2 tháng 3 2017 lúc 0:06

biet x+y =2 tinh min 3x^2 + y^2

Bình luận (0)
OP
Xem chi tiết
TX
26 tháng 5 2017 lúc 22:29

bạn chỉ cần cố gắng là làm được

Bình luận (0)
LL
26 tháng 5 2017 lúc 23:18

qui đồng đy :v

Bình luận (0)
LD
5 tháng 4 2019 lúc 20:00

tự suy nghĩ nhé bn o0o I am a studious person o0o,chỉ cần ngồi quy đồng sau làm từng bước là được nhaaaaaaaaa :)) ^_^

Bình luận (0)
KG
Xem chi tiết
AH
4 tháng 11 2023 lúc 15:40

Lời giải:

$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}$

$\Rightarrow (\frac{1}{x}+\frac{1}{y})+(\frac{1}{z}-\frac{1}{x+y+z})=0$

$\Leftrightarrow \frac{x+y}{xy}+\frac{x+y}{z(x+y+z)}=0$

$\Leftrightarrow (x+y)(\frac{1}{xy}+\frac{1}{z(x+y+z)})=0$

$\Leftrightarrow (x+y).\frac{z(x+y+z)+xy}{xyz(x+y+z)}=0$

$\Leftrightarrow (x+y).\frac{(z+x)(z+y)}{xyz(x+y+z)}=0$

$\Leftrightarrow (x+y)(y+z)(x+z)=0$

$\Leftrightarrow x=-y$ hoặc $y=-z$ hoặc $z=-x$

Nếu $x=-y$ thì:

$P=\frac{3}{4}+[(-y)^8-y^8](y^9+z^9)(z^{10}-x^{10})=\frac{3}{4}+0.(y^9+z^9)(z^{10}-x^{10})=\frac{3}{4}$

Nếu $y=-z$ thì:

$P=\frac{3}{4}+(x^8-y^8)[(-z)^9+z^9](z^{10}-x^{10})=\frac{3}{4}+(x^8-y^8).0.(z^{10}-x^{10})=\frac{3}{4}$

Nếu $z=-x$ thì:

$P=\frac{3}{4}+(x^8-y^8)(y^9+z^9)[(-x)^{10}-x^{10}]=\frac{3}{4}+(x^8-y^8)(y^9+z^9).0=\frac{3}{4}$

Bình luận (0)
DH
Xem chi tiết
YP
Xem chi tiết
H24
13 tháng 3 2022 lúc 8:51

 

a) \(A=2x^2-\dfrac{1}{3}y\)

A= \(\left(2-\dfrac{1}{3}\right)\)\(x^2y\)

A=\(\dfrac{5}{3}\)\(x^2y\)

Tại \(x=2;y=9\) ta có

A=\(\dfrac{5}{3}\).(2)\(^2\).9 = \(\dfrac{5}{3}\).4 .9 = 60

Vậy tại \(x=2;y=9\) biểu thức A= 60

b) P=\(2x^2+3xy+y^2\)            (\(y^2\) là 1\(y^2\) nha bạn)

P=\(\left(2+3+1\right)\left(x^2.x\right)\left(y.y^2\right)\)

P= 6\(x^3y^3\)

Tại \(x=-\dfrac{1}{2};y=\dfrac{2}{3}\) ta có

P= 6.\(\left(-\dfrac{1}{2}\right)^3.\left(\dfrac{2}{3}\right)^3\) = 6.\(\left(-\dfrac{1}{8}\right).\dfrac{8}{27}\) = \(-\dfrac{2}{9}\)

Vậy tại \(x=-\dfrac{1}{2};y=\dfrac{2}{3}\) biểu thức P= \(-\dfrac{2}{9}\)

c)\(\left(-\dfrac{1}{2}xy^2\right).\left(\dfrac{2}{3}x^3\right)\)

=\(\left((-\dfrac{1}{2}).\dfrac{2}{3}\right)\left(x.x^3\right).y^2\)

=\(-\dfrac{1}{3}\)\(x^4y^2\)

Tại \(x=2;y=\dfrac{1}{4}\)ta có

\(-\dfrac{1}{3}\).\(\left(2\right)^4.\left(\dfrac{1}{4}\right)^2=-\dfrac{1}{3}.16.\dfrac{1}{16}=-\dfrac{1}{3}\)

\(\)Vậy \(x=2;y=\dfrac{1}{4}\) biểu thức \(\left(-\dfrac{1}{2}xy^2\right).\left(\dfrac{2}{3}x^3\right)\)\(-\dfrac{1}{3}\)

CHÚC BẠN HỌC TỐT NHA

 

 

Bình luận (0)