cho hình bình hành abcd gọi e và f lần lượt là trung điểm của ab và cd
chứng minh af//cd
làm ơn
Cho hình bình hành ABCD, gọi E, F lần lượt là trung điểm của AB và CD.
a) Chứng minh AECF là hình bình hành
b) AF và CE cắt BD lần lượt tại M và N, chứng minh
a: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
Bài 10: Cho hình bình hành ABCD. Biết  = 1240.
a) Tính các góc của hình bình hành;
b) Gọi E, F lần lượt là trung điểm của AB và CD. Chứng minh: AF // CE;
c) Gọi O là trung điểm của AC. Chứng minh: E và F đối xứng nhau qua O.
b: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
Suy ra: FA//CE
Cho hình bình hành ABCD . Gọi M,N lần lượt là trung điểm của AB và CD. Gọi E,F lần lượt là giao điểm của AC với DM và BN.
a) chứng minh rằng DMBN là hình bình hành
b)chứng minh rằng EMlaf đường trung bình của tâm giác AFB
c)chứng minh rằng AE=AF=FC
a,Vi ABCD la hbh(gt)
=>AB=CD;AB//CD
Ma M€AB;N€CD
=>MB//ND
Vi M la trung diem cua AB
=>MA=MB=AB/2
Vi N la trung diem cua CD
=>CN=ND=CD/2
Ma AB=CD(cmt)
=>MB=DN
Tg DMBN co:
MB//DN(cmt)
MB=ND(cmt)
=>Tg DMBN la hbh(dh)
Cho hình bình hành ABCD. Gọi E và F lần lượt là trung điểm của AB và CD. Các đường AF, EC lần lượt cắt DB tại G và H. Chứng minh. A) EGFH là hình gì ? B) Hình bình hành ABCD có thêm điều kiện gì thì EGFH trở thành hình chữ nhật , hình thoi
a: Xét tứ giác EHFG có
EH//GF
EG//HF
Do đó: EHFG là hình bình hành
cho hình bình hành abcd có ad = 2ab. Gọi e và f lần lượt là trung điểm của ab và cd.
a)Chứng minh tứ giác aefc là hình bình hành.
b) tứ giác aefd là hình gi? Tại sao?.
c) bd cắt af và ce lần lượt tại h, k. Chứng minh rằng dh=hk=kb.
d) Gọi o là giao điểm của ef và hk. Chứng minh h đối xứng với k qua o
a) Ta có: \(AE=EB=\dfrac{AB}{2}\)(E là trung điểm của AB)
\(CF=FD=\dfrac{CD}{2}\)(F là trung điểm của CD)
mà AB=CD(Hai cạnh đối của hình bình hành ABCD)
nên AE=CF=FD=EB
Xét tứ giác AECF có
AE//CF(AB//CD, E∈AB, F∈CD)
AE=CF(cmt)
Do đó: AECF là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Xét tứ giác AEFD có
AE//FD(AB//CD, E∈AB, F∈CD)
AE=FD(cmt)
Do đó: AEFD là hình bình hành(Dấu hiệu nhận biết hình bình hành)
c) Ta có: AF//CE(Hai cạnh đối trong hình bình hành AECF)
mà H∈AF(gt)
và K∈CE(gt)
nên HF//KC và EK//AH
Xét ΔDKC có
F là trung điểm của CD(gt)
FH//DK(cmt)
Do đó: H là trung điểm của DK(Định lí 1 về đường trung bình của tam giác)
⇒DH=KH(1)
Xét ΔABH có
E là trung điểm của AB(gt)
EK//BH(cmt)
Do đó: K là trung điểm của BH(Định lí 1 về đường trung bình của tam giác)
⇒BK=KH(2)
Từ (1) và (2) suy ra DH=HK=KB(đpcm)
Cho hình bình hành ABCD. Gọi E, F lần lượt là trung điểm AB và CD. Gọi M, N lần lượt là giao điểm của AF và CE với đường chéo DB. Chứng minh:
a/ DM = MN = NB
b/ EMFN là hình bình hành.
c/ Gọi I, J lần lượt là trung điểm của BC và AD. Chứng minh IJ, MN, EF đồng quy.
Giúp mình với
cho tứ giác ABCD gọi E và F là trung điểm của các cạnh AB và CD Gọi M,N,P,Q lần lượt là trung điểm của các đoạn AF,CE,BF,DE. Chứng minh tứ giác MNPQ là hình bình hành
Cho hình bình hành ABCD Gọi E là trung điểm của AB F là trung điểm của CD Chứng minh rằng a de = BF B Chứng minh rằng AB CD và e f đồng quy tại một điểm c b d cắt AF và Be lần lượt ở M và N Chứng minh rằng BM = MN = mn
a: BE=AB/2
DF=DC/2
mà AB=DC
nên BE=DF
Xét tứ giác BEDF có
BE//DF
BE=DF
=>BEDF là hình bình hành
=>DE=BF
b: BEDF là hbh
=>BD cắt EF tại trung điểm của mỗi đường(1)
ABCD là hbh
=>AC cắt BD tại trung điểm của mỗi đường(2)
Từ (1), (2) suy ra AC,BD,EF đồng quy
Cho hình bình hành ABCD ( AB > AD). gọi AF là trung điểm của CD và AB . Đường chéo BD cắt AE, AC,CF lần lượt tạo N,O,M
a) chứng minh AECF là hình bình hành
b) chứng mính ba điểm B,E,F thẳng hàng
Lời giải:
a. Vì $ABCD$ là hình bình hành nên $AB=CD$
$\Rightarrow \frac{1}{2}AB=\frac{1}{2}CD$
$\Rightarrow AF=CE(1)$
Mặt khác: $AB\parallel CD\Rightarrow AF\parallel CE(2)$
Từ $(1); (2)\Rightarrow AECF$ là hình bình hành.
b.
B, E,F thẳng hàng??? Bạn xem lại đề.