Những câu hỏi liên quan
H24
Xem chi tiết
NB
16 tháng 9 2016 lúc 17:35

\(\frac{x}{y}=\frac{9}{10}\\ \Rightarrow\frac{x}{9}=\frac{y}{10}=\frac{x+y}{9+10}=\frac{60}{19}\\ \frac{x}{9}=\frac{60}{19}\Rightarrow x=\frac{60.9}{19}=\frac{540}{19}\\ \frac{y}{10}=\frac{60}{9}\Rightarrow y=\frac{60.10}{9}=\frac{600}{9}\)

Vậy \(x=\frac{540}{9};y=\frac{600}{9}\)

Bình luận (1)
SG
16 tháng 9 2016 lúc 17:36

Do \(\frac{x}{y}=\frac{9}{10}\)=> \(\frac{x}{9}=\frac{y}{10}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x}{9}=\frac{y}{10}=\frac{x+y}{9+10}=\frac{60}{19}\)

=> \(\begin{cases}x=\frac{60}{19}.9=\frac{540}{19}\\y=\frac{60}{19}.10=\frac{600}{19}\end{cases}\)

Vậy \(x=\frac{540}{19};y=\frac{600}{19}\)

Bình luận (0)
IM
16 tháng 9 2016 lúc 17:37

Ta có :

\(\frac{x}{y}=\frac{9}{10}\)

\(\Rightarrow\frac{x}{9}=\frac{y}{10}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có :

\(\frac{x}{9}=\frac{y}{10}=\frac{x+y}{9+10}=\frac{60}{19}\)

\(\Rightarrow\begin{cases}x=\frac{540}{19}\\y=\frac{600}{19}\end{cases}\)

Bình luận (0)
HT
Xem chi tiết
CU
19 tháng 7 2019 lúc 14:18

\(\frac{x}{y}=\frac{1,2}{2,5}\Rightarrow\frac{x}{y}=\frac{12}{25}\Rightarrow\frac{x}{12}=\frac{y}{25}\)

\(\Rightarrow\frac{x}{12}=\frac{y}{25}=\frac{y-x}{25-12}=\frac{26}{13}=2\)

\(\Rightarrow\hept{\begin{cases}x=2\cdot12=24\\y=2\cdot25=50\end{cases}}\)

vậy_

Bình luận (0)
H24
19 tháng 7 2019 lúc 14:27

#)Giải :

Ta có : \(\frac{x}{y}=\frac{1,2}{2,5}\Rightarrow2,5x=1,2y\Rightarrow\frac{x}{1,2}=\frac{y}{2,5}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{y}{2,5}=\frac{x}{1,2}=\frac{y-x}{2,5-1,2}=\frac{26}{1,3}=20\)

\(\hept{\begin{cases}\frac{x}{1,2}=20\\\frac{y}{2,5}=20\end{cases}\Rightarrow\hept{\begin{cases}x=24\\y=50\end{cases}}}\)

Vậy x = 24; y = 50

Bình luận (0)
NM
Xem chi tiết
H24
9 tháng 10 2017 lúc 15:40

\(\frac{x}{y}=\frac{1,2}{2,5}\)

\(\Rightarrow\frac{x}{1,2}=\frac{y}{2,5}=\frac{y-x}{2,5-1,2}=\frac{26}{1,3}=20\)

\(\Rightarrow\)\(x=20.1,2=24\)

\(y=20.2,5=50\)

Bình luận (0)
NT
17 tháng 12 2023 lúc 19:18

Ta có : ��=1,22,5⇒2,5�=1,2�⇒�1,2=�2,5

Áp dụng tính chất dãy tỉ số bằng nhau :

�2,5=�1,2=�−�2,5−1,2=261,3=20

\hept{�1,2=20�2,5=20⇒\hept{�=24�=50

Vậy x = 24; y = 50

Bình luận (0)
NN
Xem chi tiết
DT
21 tháng 7 2015 lúc 11:46

\(dat:\frac{x}{2}=\frac{y}{5}=k\)

x=2k   ;  y=5k

x.y=10k2

10 = 10k2

k= 1

k  = +-1

Voi : k=1 = > x=1.2=2 ; y=5.1=5

voi : k=-1 => x=-1.2=-2 ; y=-1.5=-5

Bình luận (0)
DT
21 tháng 7 2015 lúc 11:44

\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{2}=\frac{4y}{12};\frac{3y}{12}=\frac{z}{5}\Rightarrow\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{z}{15}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Ap dung tinh chat day ti so bang nhau ta co : 

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

Suy ra  : \(\frac{x}{8}=2\Rightarrow x=16;\frac{y}{12}=2\Rightarrow y=2.12=24;\frac{z}{15}=2\Rightarrow z=2.15=30\)

nhieu qua lam ko het

Bình luận (0)
NM
Xem chi tiết
ST
3 tháng 10 2016 lúc 14:20

\(\frac{x}{y}=\frac{8}{11};\frac{z}{y}=\frac{3}{11}\Rightarrow\frac{x}{8}=\frac{y}{11};\frac{y}{11}=\frac{z}{3}\Rightarrow\frac{x}{8}=\frac{y}{11}=\frac{z}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

\(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}=\frac{x+y-z}{8+11-3}=\frac{80}{16}=5\)

\(\Rightarrow x=5.8=40\)

\(\Rightarrow y=5.11=55\)

Vậy x = 40 ; y = 55

Bình luận (0)
SM
Xem chi tiết
PM
8 tháng 7 2017 lúc 10:36

Bài I: Từ \(\frac{x}{2}\)=\(\frac{y}{3}\)\(\Rightarrow\)\(\frac{x}{2}\).\(\frac{1}{4}\)=\(\frac{y}{3}\).\(\frac{1}{4}\)\(\Rightarrow\)\(\frac{x}{8}\)=\(\frac{y}{12}\)(1)

Từ \(\frac{y}{4}\)=\(\frac{z}{5}\)\(\Rightarrow\)\(\frac{y}{4}\).\(\frac{1}{3}\)=\(\frac{z}{5}\).\(\frac{1}{3}\)\(\Rightarrow\)\(\frac{y}{12}\)=\(\frac{z}{15}\)(2)

Từ (1) và (2) suy ra \(\frac{x}{8}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

    \(\frac{x}{8}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)=\(\frac{x+y-z}{8+12-15}\)=\(\frac{10}{5}\)=2

Do đó:\(x=2.8=16\)

          \(y=12.2=24\)

          \(z=15.2=30\)

   Vậy \(x=16\);\(y=24\);\(z=30\)

Bài II: Đặt \(k=\frac{x}{2}\)=\(\frac{y}{5}\)

         \(\Rightarrow\)\(x=2.k\);\(y=5.k\)

\(x.y=10\)nên \(2k.5k=10\)

                         \(\Rightarrow\)\(10.k^2=10\)

                         \(\Rightarrow\)\(k^2=1\)

                        \(\Rightarrow\)\(k=1\)hoặc\(k=-1\)

 +) Với \(k=1\)thì \(x=2\);\(y=5\)

 +) Với \(k=-1\)thì \(x=-2\);\(y=-5\)

           Vậy \(x=2\);\(y=5\)hoặc \(x=-2\);\(y=-5\)

Bình luận (0)
DP
8 tháng 7 2017 lúc 10:37

\(\frac{x}{2}=\frac{y}{5}\)và  \(xy=10\)

Ta có : 

\(\frac{x}{2}=\frac{y}{5}\Leftrightarrow5x=2y\Leftrightarrow x=\frac{2y}{5}\). Thay vào biểu thức x . y = 10 . Ta được : 

\(\frac{2y}{5}.y=10\Leftrightarrow\frac{2y^2}{5}=10\Leftrightarrow2y^2=50\Leftrightarrow y^2=25\Leftrightarrow y=5;y=-5\)

Với  \(y=5\Rightarrow x=\frac{2.5}{5}=2\)

Với \(y=-5\Rightarrow x=\frac{2.\left(-5\right)}{5}=-2\)

Bình luận (0)
PH
Xem chi tiết
CN
16 tháng 7 2016 lúc 10:58

2). Ta có: x/2=y/3 => x/8 = y/12

                y/4=z/5 => y/12 = z/15

=> x/2=y/12=z/15 và x+y-z=10

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{2}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)=\(\frac{x+y-z}{2+12-15}\)=\(\frac{10}{-1}\)= -10

=> x=2.(-10)=-20

     y=12.(-10)=-120

     z=15.(-10)=-150

Vậy x=-20; y=-120;z=-150

3). Đặt \(\frac{x}{2}\)=\(\frac{y}{5}\)= k

=> x=2k

     y=5k

Ta có xy = 10

       2k.5k =10

       10. k2=10

       k2      = 10 :10=1

=> k =1; k=-1

+) k = 1

=> x=2.1=2

     y=5.1=5

+) k = -1

=> x= 2.(-1) =-2

     y=5.(-1) = -5

Vậy x=2;y=5 hoặc x=-2;y=-5

Bình luận (0)
NN
16 tháng 7 2016 lúc 10:51

Câu 2:

Ta có \(\frac{x}{2}=\frac{y}{3}=\frac{x}{8}=\frac{y}{12}\)(1)

           \(\frac{y}{4}=\frac{z}{5}=\frac{y}{12}=\frac{z}{15}\)(2)

    Từ (1) và (2) suy ra:\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng dãy tỉ số bằng nhau ta có:

    \(\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\Rightarrow\begin{cases}\frac{x}{8}=2\\\frac{y}{12}=2\\\frac{z}{15}=2\end{cases}\)\(\Rightarrow\begin{cases}x=16\\y=24\\z=30\end{cases}\)

Vậy x=16;y=24;z=30

Bình luận (0)
NN
16 tháng 7 2016 lúc 11:00

Câu 3:

Vì xy=10 nên x,y khác 0

    Đặt \(\frac{x}{2}=k\)\(\Rightarrow\)x=2k(1)

           \(\frac{y}{5}=k\)\(\Rightarrow\)y=5k2)

Suy ra x.y=2k.5k=10k2

      Ta có:x.y=10

Do đó k=1;-1. Thay vào (1) và (2) ta có:

x=2k(Suy ra:x=2;-2)

y=5k(Suy ra:y=5;-5)

Vậy cặp (x;y)là:(2;5)(-2;-5)

         

 

 

Bình luận (1)
CX
Xem chi tiết
V1
4 tháng 9 2016 lúc 7:32

 C1 : x/3=y/5 =>x=3y/5 
=>3y/5+y=16 
<=>8y/5=16 
=>y=16.5/8=10 
=>x=16-10=6
C2: Ta có: x/3 = y/5 = (x+y)/(3+5) = 16/8 = 2 (tính chất dãy tỉ số bằng nhau) 
Từ x/3 = 2 => x = 6. 
Từ y/5 = 2 => y = 10.

Bình luận (0)
HT
4 tháng 9 2016 lúc 7:29

x =\(\frac{40}{3}\)

y = \(\frac{8}{3}\)

Bình luận (0)
CX
4 tháng 9 2016 lúc 7:37

vì \(\frac{x}{3}=\frac{y}{5}\) do tính chất của dãy tỉ số bằng nhau 

\(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}\)

thay x + y = 16 vào đẳng thức trên 

ta có : \(\frac{x}{3}=\frac{y}{5}=\frac{16}{8}=2\)

vậy x = 2 x 3 = 6 ; y = 2 x 5 = 10 

Bình luận (0)
PL
Xem chi tiết